Rocket

传统的搜索通常将召回和精排两个阶段分开进行,本文提出了一个联合训练模型,将召回模型(Retriever)看做精排模型(Re-ranker)的蒸馏,从而将两个模型一起联合训练。并据此想法提出了名为动态列表蒸馏(dynamic listwise distillation)的方法,来适应排序模型与传统模型的不同。另一方面,在RocketQA的数据增强手段基础上,提出了混合数据增强的方法。最终实验结果表明...

特别声明: 版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。