Python大规模机器学习 第2页

第2章 Scikit-learn中的可扩展学习 假如拥有这个时代强大而又实惠的电脑,那么,将数据集加载到内存中、准备好数据矩阵、训练机器学习算法以及使用样本外观察法来测试其泛化能力通常并不是非常困难。然而,随着要处理的数据规模越来越大,不可能将其加载到计算机核心内存中,即使能加载,在处理数据管理和机器学习两方面,其结果依旧会很棘手。 一种避开核心内存的可行策略是:将数据分割为样本,使用并行性,最后...

特别声明: 版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。