强化学习原理与Python实现 》 —1.2 强化学习的应用

网友投稿 777 2022-05-28

《强化学习:原理与Python实现 》 —1.2 强化学习的应用

1.2 强化学习的应用

基于强化学习的人工智能已经有了许多成功的应用。本节将介绍强化学习的一些成功案例,让你更直观地理解强化学习,感受强化学习的强大。

电动游戏:电动游戏,主要指玩家需要根据屏幕画面的内容进行操作的游戏,包括主机游戏吃豆人(PacMan,见图1-2)、PC游戏星际争霸(StarCraft)、手机游戏Flappy Bird等。很多游戏需要得到尽可能高的分数,或是要在多方对抗中获得胜利。同时,对于这些游戏,很难获得在每一步应该如何操作的标准答案。从这个角度看,这些游戏的游戏AI需要使用强化学习。基于强化学习,研发人员已经开发出了许多强大的游戏AI,能够超越人类能够得到的最佳结果。例如,在主机Atari 2600的数十个经典游戏中,基于强化学习的游戏AI已经在将近一半的游戏中超过人类的历史最佳结果。

图1-2 街机游戏吃豆人(本图片改编自https://en.wikipedia.org/wiki/Pac-Man#Gameplay)

棋盘游戏:棋盘游戏是围棋(见图1-3)、黑白翻转棋、五子棋等桌上游戏的统称。通过强化学习可以实现各种棋盘运动的AI。棋盘AI有着明确的目标—提高胜率,但是每一步往往没有绝对正确的答案,这正是强化学习所针对的场景。Deepmind公司使用强化学习研发出围棋AI AlphaGo,于2016年3月战胜围棋顶尖选手李世石,于2017年5月战胜排名世界第一的围棋选手柯洁,引起了全社会的关注。截至目前,最强的棋盘游戏AI是DeepMind在2018年12月发表的AlphaZero,它可以在围棋、日本将棋、国际象棋等多个棋盘游戏上达到最高水平,并远远超出人类的最高水平。

图1-3 一局围棋棋谱(图中实心圆表示黑棋的棋子,空心圆表示白棋的棋子,圆里的数字记录棋子是在第几步被放在棋盘上,本图片改编自论文D. Silver, et al. Mastering the game of Go without human knowledge, Nature, 2017)

自动驾驶:自动驾驶问题通过控制方向盘、油门、刹车等设备完成各种运输目标(见图1-4)。自动驾驶问题既可以在虚拟环境中仿真(比如在电脑里仿真),也可能在现实世界中出现。有些任务往往有着明确的目标(比如从一个指定地点到达另外一个指定地点),但是每一个具体的动作却没有正确答案作为参考。这正是强化学习所针对的任务。基于强化学习的控制策略可以帮助开发自动驾驶的算法。

图1-4 自动驾驶(本图截取自仿真平台AirSimNH)

Python AI 5G游戏

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:MongoDB 第2章 MongoDB体系结构
下一篇:DDS数据库均衡慢问题
相关文章