如何生成构架图(结构图生成)
579
2022-05-29
前言
1、引言
当前随着计算机硬件的快速发展,个人电脑上的 CPU 也是多核的,现在普遍的 CUP 核数都是 4 核或者 8 核的。因此,在编写程序时,需要为了提高效率,充分发挥硬件的能力,则需要编写并行的程序。Java 语言作为互联网应用的主要语言,广泛应用于企业应用程序的开发中,它也是支持多线程(Multithreading)的,但多线程虽好,却对程序的编写有较高的要求。
单线程可以正确运行的程序不代表在多线程场景下能够正确运行,这里的正确性往往不容易被发现,它会在并发数达到一定量的时候才可能出现。这也是在测试环节不容易重现的原因。因此,多线程(并发)场景下,如何编写线程安全(Thread-Safety)的程序,对于程序的正确和稳定运行有重要的意义。下面将结合示例,谈谈如何在 Java 语言中,实现线程安全的程序。
为了给出感性的认识,下面给出一个线程不安全的示例,具体如下:
package com.example.learn; public class Counter { private static int counter = 0; public static int getCount(){ return counter; } public static void add(){ counter = counter + 1; } }1.2.3.4.5.6.7.8.9.10.
1
2
3
4
5
6
7
8
9
10
这个类有一个静态的属性 counter,用于计数。其中可以通过静态方法 add()对 counter 进行加 1 操作,也可以通过 getCount()方法获取到当前的计数 counter 值。如果是单线程情况下,这个程序是没有问题的,比如循环 10 次,那么最后获取的计数 counter 值为 10。但多线程情况下,那么这个结果就不一定能够正确获取,可能等于 10,也可能小于 10,比如 9。下面给出一个多线程测试的示例:
package com.example.learn; public class MyThread extends Thread{ private String name ; public MyThread(String name){ this.name = name ; } public void run(){ Counter.add(); System.out.println("Thead["+this.name+"] Count is "+ Counter.getCount()); } } /// package com.example.learn; public class Test01 { public static void main(String[] args) { for(int i=0;i<5000;i++){ MyThread mt1 = new MyThread("TCount"+i); mt1.start(); } } }1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
这里为了重现计数的问题,线程数调至比较大,这里是 5000。运行此示例,则输出可能结果如下:
Thead[TCount5] Count is 4 Thead[TCount2] Count is 9 Thead[TCount4] Count is 4 Thead[TCount14] Count is 10 .................................. Thead[TCount4911] Count is 4997 Thead[TCount4835] Count is 4998 Thead[TCount4962] Count is 49991.2.3.4.5.6.7.8.
1
2
3
4
5
6
7
8
注意:多线程场景下,线程不安全的程序输出结果具有不确定性。
2、synchronized 方法
基于上述的示例,让其变成线程安全的程序,最直接的就是在对应的方法上添加 synchronized 关键字,让其成为同步的方法。它可以修饰一个类,一个方法和一个代码块。对上述计数程序进行修改,代码如下:
package com.example.learn; public class Counter { private static int counter = 0; public static int getCount(){ return counter; } public static synchronized void add(){ counter = counter + 1; } }1.2.3.4.5.6.7.8.9.10.
1
2
3
4
5
6
7
8
9
10
再次运行程序,则输出结果如下:
...... Thead[TCount1953] Count is 4998 Thead[TCount3087] Count is 4999 Thead[TCount2425] Count is 50001.2.3.4.
1
2
3
4
3、加锁机制
另外一种常见的同步方法就是加锁,比如 Java 中有一种重入锁 ReentrantLock,它是一种递归无阻塞的同步机制,相对于 synchronized 来说,它可以提供更加强大和灵活的锁机制,同时可以减少死锁发生的概率。示例代码如下:
package com.example.learn; import java.util.concurrent.locks.ReentrantLock; public class Counter { private static int counter = 0; private static final ReentrantLock lock = new ReentrantLock(true); public static int getCount(){ return counter; } public static void add(){ lock.lock(); try { counter = counter + 1; } finally { lock.unlock(); } } }1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
再次运行程序,则输出结果如下:
...... Thead[TCount1953] Count is 4998 Thead[TCount3087] Count is 4999 Thead[TCount2425] Count is 50001.2.3.4.
1
2
3
4
注意:Java 中还提供了读写锁 ReentrantReadWriteLock,这样可以进行读写分离,效率更高。
4、使用 Atomic 对象
由于锁机制会影响一定的性能,而有些场景下,可以通过无锁方式进行实现。Java 内置了 Atomic 相关原子操作类,比如 AtomicInteger,AtomicLong, AtomicBoolean 和 AtomicReference,可以根据不同的场景进行选择。下面给出示例代码:
package com.example.learn; import java.util.concurrent.atomic.AtomicInteger; public class Counter { private static final AtomicInteger counter = new AtomicInteger(); public static int getCount(){ return counter.get(); } public static void add(){ counter.incrementAndGet(); } }1.2.3.4.5.6.7.8.9.10.11.
1
2
3
4
5
6
7
8
9
10
11
再次运行程序,则输出结果如下:
...... Thead[TCount1953] Count is 4998 Thead[TCount3087] Count is 4999 Thead[TCount2425] Count is 50001.2.3.4.
1
2
3
4
5、无状态对象
前面提到,线程不安全的一个原因就是多个线程同时访问某个对象中的数据,数据存在共享的情况,因此,如果将数据变成独享的,即无状态(stateless)的话,那么自然就是线程安全的。而所谓的无状态的方法,就是给同样的输入,就能返回一致的结果。下面给出示例代码:
package com.example.learn; public class Counter { public static int sum (int n) { int ret = 0; for (int i = 1; i <= n; i++) { ret += i; } return ret; } }1.2.3.4.5.6.7.8.9.10.
1
2
3
4
5
6
7
8
9
10
6、不可变对象
前面提到,如果需要在多线程中共享一个数据,而这个数据给定值,就不能改变,那么也是线程安全的,相当于只读的属性。在 Java 中可以通过 final 关键字进行属性修饰。下面给出示例代码:
package com.example.learn; public class Counter { public final int count ; public Counter (int n) { count = n; } }1.2.3.4.5.6.7.
1
2
3
4
5
6
7
7、总结
前面提到了几种线程安全的方法,总体的思想要不就是通过锁机制实现同步,要不就是防止数据共享,防止在多个线程中对数据进行读写操作。另外,有些文章中说到,可以在变量前使用 volatile 修饰,来实现同步机制,但这个经过测试是不一定的,有些场景下,volatile 依旧不能保证线程安全。虽然上述是线程安全的经验总结,但是还是需要通过严格的测试进行验证,实践是检验真理的唯一标准。
最后
我这边整理了一份多线程相关资料文档,还有:Spring系列全家桶、Java的系统化资料:(包括Java核心知识点、面试专题和21年最新的互联网真题、电子书等)有需要的朋友可以关注公众号【程序媛小琬】即可获取。
任务调度 多线程
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。