java内存模型二

网友投稿 497 2022-05-29

Java内存模型

volatile写的内存语义:当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量值刷新到主内存。

volatile读的内存语义如下:当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。

线程A写一个volatile变量,实质上是线程A向接下来将要读这个volatile变量的某个线程发出了(其对共享变量所做修改的)消息。

线程B读一个volatile变量,实质上是线程B接收了之前某个线程发出的(在写这个volatile变量之前对共享变量所做修改的)消息。

线程A写一个volatile变量,随后线程B读这个volatile变量,这个过程实质上是线程A通过主内存向线程B发送消息。

基于保守策略的JMM内存屏障插入策略:

在每个volatile写操作的前面插入一个StoreStore屏障。

在每个volatile写操作的后面插入一个StoreLoad屏障。

在每个volatile读操作的后面插入一个LoadLoad屏障。

在每个volatile读操作的后面插入一个LoadStore屏障。

public class VolatileBarrierExample { int a; volatile int v1 = 1; volatile int v2 = 2; void readAndWrite() { int i = v1; // 第一个volatile读 int j = v2; // 第二个volatile读 a = i + j; // 普通写 v1 = i + 1; // 第一个volatile写 v2 = j * 2; // 第二个 volatile写 } }

线程A释放一个锁,实质上是线程A向接下来将要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。

线程B获取一个锁,实质上是线程B接收了之前某个线程发出的(在释放这个锁之前对共享变量所做修改的)消息。

线程A释放锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。

java内存模型二

ReentrantLock分为公平锁和非公平锁,我们首先分析公平锁

使用公平锁时,加锁方法lock()调用轨迹如下。

1)ReentrantLock:lock()。

2)FairSync:lock()。

3)AbstractQueuedSynchronizer:acquire(int arg)。

4)ReentrantLock:tryAcquire(int acquires)。

private volatile int state; protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }

从上面源代码中我们可以看出,加锁方法首先读volatile变量state。

在使用公平锁时,解锁方法unlock()调用轨迹如下。

1)ReentrantLock:unlock()。

2)AbstractQueuedSynchronizer:release(int arg)。

3)Sync:tryRelease(int releases)。

protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; }

从上面的源代码可以看出,在释放锁的最后setState 写volatile变量state。

公平锁在释放锁的最后写volatile变量state,在获取锁时首先读这个volatile变量。根据volatile的happens-before规则,释放锁的线程在写volatile变量之前可见的共享变量,在获取锁的线程读取同一个volatile变量后将立即变得对获取锁的线程可见。

非公平锁的释放和公平锁完全一样,所以这里仅仅分析非公平锁的获取。使用非公平锁时,加锁方法lock()调用轨迹如下。

1)ReentrantLock:lock()。

2)NonfairSync:lock()。

3)AbstractQueuedSynchronizer:compareAndSetState(int expect,int update)。

/** * Sync object for non-fair locks */ static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } }

protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }

该方法以原子操作的方式更新state变量,Java的compareAndSet()方法调用简称为CAS。JDK文档对该方法的说明如下:如果当前状态值等于预期值,则以原子方式将同步状态设置为给定的更新值

cas原理:如果程序是在多处理器上运行 就在指令加上lock前缀

lock前缀作用:

1)确保对内存的读-改-写操作原子执行。在Pentium及Pentium之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其他处理器暂时无法通过总线访问内存。很显然,这会带来昂贵的开销。从Pentium 4、Intel Xeon及P6处理器开始,Intel使用缓存锁定(Cache Locking)来保证指令执行的原子性。缓存锁定将大大降低lock前缀指令的执行开销。

2)禁止该指令,与之前和之后的读和写指令重排序。

3)把写缓冲区中的所有数据刷新到内存中。

所以CAS同时具有volatile读和volatile写的内存语义

总结:公平锁和非公平锁释放时,最后都要写一个volatile变量state。

公平锁获取时,首先会去读volatile变量。

非公平锁获取时,首先会用CAS更新volatile变量,这个操作同时具有volatile读和volatile写的内存语义。

锁释放-获取的内存语义的实现至少有下面两种方式:

1)利用volatile变量的写-读所具有的内存语义。

2)利用CAS所附带的volatile读和volatile写的内存语义。

current并发包

由于Java的CAS同时具有volatile读和volatile写的内存语义,因此Java线程之间的通信现

在有了下面4种方式。

1)A线程写volatile变量,随后B线程读这个volatile变量。

2)A线程写volatile变量,随后B线程用CAS更新这个volatile变量。

3)A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。

4)A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。

concurrent包的源代码通用化的实现模式:

首先,声明共享变量为volatile。

然后,使用CAS的原子条件更新来实现线程之间的同步。

同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的

通信。

AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的

Java 任务调度

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Zabbix5.0中文手册已发布,来领取PDF版!译者将现身Meetup上海站, 欢迎交流!
下一篇:常见的API接口管理工具
相关文章