2019 王者之争:与 Tensorflow 竞争白热化,进击的 PyTorch 赢在哪里?

网友投稿 590 2022-05-29

大数据文摘出品

来源:thegradient

编译:张大笔茹、曹培信、刘俊寰、牛婉扬、Andy

2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对方借鉴,但是都不太理想。

最后谁能胜出?还得看谁更好的回答几个关键问题。

来自康奈尔大学的Horace He刚刚在Gradient发布了一篇长文探讨2019年的两大机器学习框架之争,他论述了PyTorch和TensorFlow各自的优劣和发展趋势,但是很明显更看好PyTorch,特别是其在学术领域起到的驱动作用。

刚好,今天也是PyTorch 1.3发布的日子,最新的版本增加了更多工业方面的能力,量化还有终端支持。PyTorch官方称还将启动许多其他工具和库,以支持模型的可解释性,并将多模式研究投入生产。

PyTorch 1.3发布官方链接:

https://PyTorch.org/blog/PyTorch-1-dot-3-adds-mobile-privacy-quantization-and-named-tensors/

机器学习的未来你更看好PyTorch还是TensorFlow呢?也欢迎留言告诉我们。

没有Python。运行Python对服务器的开销太大了;

移动。你不能在移动终端二进制文件中嵌入Python解释器;

2019 王者之争:与 Tensorflow 竞争白热化,进击的 PyTorch 赢在哪里?

服务。需要包罗万象的功能:不用停机更新的模型,在模型之间无缝切换,批处理在预测时间,等等。

研究者偏好对产业的影响有多大?随着当前一批博士研究生开始毕业,他们也许会带上用惯的PyTorch。这种势头是否足够明显,以至于公司会选择PyTorch用于招聘的条件?同时毕业生会在PyTorch的基础上创业吗?

TensorFlow的Eager模式在可用性上能赶上PyTorch吗?就网上的反应来看,TensorFlow Eager严重受到性能/内存方面问题的困扰,而且Autograph也有自己的问题。谷歌将花费大量的工程努力,但TensorFlow还是背负着历史包袱

PyTorch满足产业需求的速度有多快?PyTorch还有许多没有解决的基本问题——没有好的量化支持、不支持移动等等。在这些问题得到解决之前,PyTorch甚至不会成为许多公司的选择。PyTorch能否为企业提供一个足够吸引人的故事来进行转型?注意:PyTorch已经宣布支持量化和移动。虽然两者都还处于试验阶段,但代表了PyTorch在这方面的重大进展。

谷歌在行业中的孤立会伤害TensorFlow吗?谷歌推动TensorFlow的主要原因之一是帮助其蓬勃发展的云服务。由于谷歌试图拥有整个机器学习垂直领域,这促使谷歌与之竞争的公司(如微软、亚马逊、Nvidia)支持只能支持PyTorch。

https://thegradient.pub/state-of-ml-frameworks-2019-PyTorch-dominates-research-TensorFlow-dominates-industry/?nsukey=RG9rAFcvX0owsip%2BviuAbdWRIFSgV1Yvu7Oj6KhVNWWGEpmoUHaDqlPyjAOIGgCho%2B2PznlO1KQYW8u9DRdYlPaILzqUApS1GAhmL3M0gzBGeyCQhOpiftWASSZTR1xaNMzV7VwTuLvCfUyjKAw1TyuzeOQxF8yhnIiuGJcRdthH7JX%2FaOLMtMfgaiDs0TuIDe5lMlcmhRZtnAg3YP30gg%3D%3D

人工智能

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:小米嵌入式软件工程师笔试题目解析
下一篇:初次使用 AppCube 的你需要了解的信息 |【玩转应用魔方】
相关文章