注意:
半缺省参数必须从右往左依次来给出,不能间隔着给
缺省参数不能在函数声明和定义中同时出现
//a.h void TestFunc(int a = 10); // a.c void TestFunc(int a = 20) {} // 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那 // 个缺省值。
缺省值必须是常量或者全局变量
C语言不支持(编译器不支持)
五:函数重载
自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重载了。
比如:以前有一个笑话,国有两个体育项目大家根本不用看,也不用担心。一个是乒乓球,一个是男足。前
者是“谁也赢不了!”,后者是“谁也赢不了!”
函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的
形参列表(参数个数 或 类型 或 顺序)必须不同,常用来处理实现功能类似数据类型不同的问题
示例:
int Add(int left, int right) { return left + right; } double Add(double left, double right) { return left + right; } long Add(long left, long right) { return left + right; } int main() { Add(10, 20); Add(10.0, 20.0); Add(10L, 20L); return 0; }
注:函数是否重载一定是在函数名相同下关于函数参数是否不同(函数参数的类型,个数,顺序三者满足其中之一即可)
名字修饰
为什么C++支持函数重载,而C语言不支持函数重载呢?
在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接。
当前a.cpp中调用了b.cpp中定义的Add函数时:
编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中
链接器看到a.o调用Add,但是没有Add的地址,就会到b.o的符号表中找Add的地址,然后链接到一起
链接时,面对Add函数,连接器会根据编译器自己的函数名修饰规则去找对应出现的函数,而C/C++的命名修饰是不同的
示例:使用gcc演示修饰后的函数名字
说明:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变
C不支持函数重载:
如果有重载函数(函数名相同,参数不同),根据C语言的名字修饰规则,那么在编译后生成的符号表则会存在多个相同的函数名,在链接对应函数的地址时则会有歧义,无法链接成功,也就无法支持函数重载
采用C++编译器编译后结果
说明:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息根据规则添加到修改后的名字中
C++支持函数重载:
[ ] 在链接对应函数地址时,其函数名字修饰规则会根据参数生成不同的函数名字,从而使得呢能够成功找到对应函数地址,并连接成功,也就支持了函数重载
注:windows命名规则比linux复杂,但本质上原理都是一致的;也因为函数名字修饰的规则,函数重载要求参数不同,而跟返回值没关系
extern “C”
有时候在C++工程中可能需要将某些函数按照C的风格来编译,在函数前加extern “C”,意思是告诉编译器,将该函数按照C语言规则来编译
例:
tcmalloc是google用C++实现的一个项目,他提供tcmallc()和tcfree两个接口来使用,但如果是C项目就没办法使用,那么他就使用extern “C”来解决
例:
extern "C" int Add(int left, int right); int main() { Add(1,2); return 0; } //链接时报错:error LNK2019: 无法解析的外部符号_Add,该符号在函数 _main 中被引用
六:引用
概念
引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它
引用的变量共用同一块内存空间。
类型& 引用变量名(对象名) = 引用实体;
void TestRef() { int a = 10; int& ra = a;//<====定义引用类型 printf("%p\n", &a); printf("%p\n", &ra); }
注意:引用类型必须和引用实体是同种类型的
引用特性
引用在定义时必须初始化
一个变量可以有多个引用
引用一旦引用一个实体,再不能引用其他实体
引用和指针的区别
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
int main() { int a = 10; int& ra = a; cout<<"&a = "<<&a<在底层实现上实际是有空间的,因为引用是按照指针方式来实现的
引用和指针的不同点:
引用在定义时必须初始化,指针没有要求
引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型
实体
没有NULL引用,但有NULL指针
在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占
4个字节)
引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
有多级指针,但是没有多级引用
访问实体方式不同,指针需要显式解引用,引用编译器自己处理
引用比指针使用起来相对更安全
内联函数
概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在***调用内联函数的地方展开***,没有函数压栈的开销,
内联函数提升程序运行的效率。
特性
inline是一种以空间换时间的做法,省去调用函数额开销。所以代码很长或者有循环/递归的函数不适宜 使用作为内联函数。
inline对于编译器而言只是一个建议,编译器会自动优化,如果定义为inline的函数体内有循环/递归等 等,编译器优化时会忽略掉内联。
inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会 找不到。
// F.h #include using namespace std; inline void f(int i); // F.cpp #include "F.h" void f(int i) { cout << i << endl; } // main.cpp #include "F.h" int main() { f(10); return 0; } // 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl f(int)" (? //f@@YAXH@Z),该符号在函数 _main 中被引用
auto关键字(C++11)
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型
指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
int TestAuto() { return 10; } int main() { int a = 10; auto b = a; auto c = 'a'; auto d = TestAuto(); cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; cout << typeid(d).name() << endl; //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化 return 0; }
注意
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类
型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为
变量实际的类型。
九:基于范围的for循环(C++11)
范围for的语法
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i) array[i] *= 2; for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p) cout << *p << endl; } void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for(auto& e : array) e *= 2; for(auto e : array) cout << e << " "; return 0; } void TestFor(int array[]) { for(auto& e : array) cout<< e <对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中
引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:
第一部分是范围内用于迭代的变量,
第二部分则表示被迭代的范围
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for(auto& e : array) e *= 2; for(auto e : array) cout << e << " "; return 0; }
十:指针空值nullptr(C++11)
在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的
错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr() { int* p1 = NULL; int* p2 = 0; // …… }
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL #ifdef __cplusplus #define NULL 0 #else #define NULL ((void *)0) #endif #endif
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在
使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
void f(int) { cout<<"f(int)"<程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下
将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。
注意:
1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。
2. 在C++11中,sizeof(nullptr) 与 sizeof((void)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。*
总结
本章讲的知识之所以比较杂和乱,是因为我们要先打好基础,为了下一章的***类和对象***
感觉不错的话,关注本博主!我会慢慢带你学习C++的
C++ Linux
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。