MRS IoTDB时序数据库架构设计与实现(1)

网友投稿 1152 2022-05-29

MRS IoTDB是华为FusionInsight MRS大数据套件最新推出的时序数据库产品,其领先的设计理念在时序数据库领域展现出越来越强大的竞争力,得到了越来越多的用户认可。为了大家更好地了解MRS IoTDB,本文将会系统地为大家介绍MRS IoTDB的来龙去脉和功能特性,重点为大家介绍MRS IoTDB时序数据库的架构设计与实现,这次先为大家介绍MRS IoTDB的整体架构设计,后续系列文章会为大家逐步展开细节介绍。

什么是时序数据库

时序数据库是时间序列数据库的简称,指的是专门对带时间标签(按照时间的顺序变化,即时间序列化)的数据进行存储、查询、分析等处理操作的专用数据库系统。通俗来说,时序数据库就是专门用来记录例如物联网设备的温度、湿度、速度、压力、电压、电流以及证券买入卖出价等随着时间演进不断变化的各类数值(测点、事件)的数据库。

当前,随着大数据技术发展和应用的不断深入,以物联网IoT(Internet Of Things)、金融分析为代表的两类数据,表现出随着时间的演进连续不断地产生大量传感器数值或事件数据。时间序列数据(time series data)就是以数据(事件)发生的时刻(时间戳)为时间轴形成的连续不断的数值序列。例如某物联网设备不同时刻的的温度数据构成一个时间序列数据:

时间戳

设备ID

温度

T1

D1

28

T2

D2

31

T3

D3

12

T4

D4

89

无论是机器产生的传感器数据,还是人类活动产生的社会事件数据,都有一些共同的特征:

(1)采集频率高:每秒采集几十次、上百次、十万次乃至百万次;

(2)采集精度高:最少支持毫秒级采集,有些需要支持微秒级和纳秒级采集;

(3)采集跨度大:7*24小时持续不断地连续采集几年、乃至数十年数据;

(4)存储周期长:需要支持时序数据的持久存储,甚至对有些数据需要进行长达上百年的永久存储(例如地震数据);

(5)查询窗口长:需要支持从毫秒、秒、分钟、小时到日、月、年等不同粒度的时间窗口查询;也需要支持万、十万、百万、千万等不同粒度的数量窗口查询;

(6)数据清洗难:时间序列数据存在乱序、缺失、异常等复杂情况,需要专

用算法进行高效实时处理;

(7)实时要求高:无论是传感器数据还是事件数据,都需要毫秒级、秒级的实时处理能力,以确保对实时响应和处理能力;

(8)算法专业强:时间序列数据在地震、金融、电力、交通等不同领域,都有很多垂直领域的专业时序分析需求,需要利用时序趋势预测、相似子序列分析、周期性预测、时间移动平均、指数平滑、时间自回归分析以及基于LSTM的时序神经网络等算法进行专业分析。

根据时序数据的共同特征可以看出,时间序列特殊的场景需求给传统的关系数据库存储和大数据存储都带来了挑战,无法是采用关系数据库进行结构化存储,还是采用NoSQL数据库进行存储,都无法满足海量时序数据高并发实时写入和查询的需求。因此,迫切需要一种专门用于存储时间序列数据的专用数据库,时序数据库的概念和产品就这样诞生了。

需要注意的是:时序数据库不同于时态数据库和实时数据库。时态数据库(Temporal Database)是一种能够记录对象变化历史,即能够维护数据的变化经历的数据库,比如TimeDB。时态数据库是对传统关系数据库中时间记录的时间状态进行细粒度维护的系统,而时序数据库完全不同于关系数据库,只存储不同时间戳对应的测点值。有关时序数据库与时态数据库的更详细对比,后续将会发文专门介绍,在此不再详述。

时序数据库也不同于实时数据库。实时数据库诞生于传统工业,主要是因为现代工业制造流程及大规模工业自动化的发展,传统关系数据库难以满足工业数据的存储和查询需求。因此,在80年代中期,诞生了适用于工业监控领域的实时数据库。由于实时数据库诞生早,在扩展性、大数据生态对接、分布式架构、数据类型等方面存在局限,但是也有产品配套齐全、工业协议对接完整的优势。时序数据库诞生于物联网时代,在大数据生态对接、云原生支持等方面更有优势。

时序数据库与时态数据库、实时数据库的基本对比信息如下:

时序数据库

时态数据库

实时数据库

诞生时代

诞生于物联网时代

诞生于20世纪80年代

诞生于传统工业时代

与关系数据库关系

与关系数据库无直接关系

对关系数据库的时态扩展

对关系数据库的扩展增强

时间序列处理能力

适合处理时间序列

不适合处理时间序列

适合处理时间序列

架构

分布式架构

非分布式架构

非分布式架构

生态

对接

大数据生态对接

缺乏大数据生态对接

缺乏大数据生态对接

2.什么是MRS IoTDB时序数据库

MRS IoTDB是华为FusionInsight MRS大数据套件中的时序数据库产品,在深度参与Apache IoTDB社区开源版的基础上推出的高性能企业级时序数据库产品。IoTDB顾名思义,是针对IoT物联网领域推出的专用时序数据库软件,是由清华大学发起的国产Apache开源软件。自IoTDB诞生之初,华为就深度参与IoTDB的架构设计和核心代码贡献,对IoTDB集群版的稳定性、高可用和性能优化投入了大量人力并提出了大量的改进建议和贡献了大量的代码。

IoTDB在设计之初,全面分析了市面上的时序数据库相关产品,包括基于传统关系数据库的Timescale、基于HBase的OpenTSDB、基于Cassandra的KariosDB、基于时序专属结构的InfluxDB等主流时序数据库,借鉴了不同时序数据在实现机制方面的优势,形成了自己独特的技术优势:

(1)支持高速数据写入

独有的基于两阶段LSM合并的tLSM算法有效保障了IoTDB即使在乱序数据存在的情况下也能轻松实现单机每秒千万测点数据的并发写入能力。

(2)支持高速查询

支持TB级数据毫秒级查询

(3)功能完备

支持CRUD等完整的数据操作(更新通过对同一设备同一时间戳的测点数据覆盖写入来实现,删除通过设置TTL过期时间来实现),支持频域查询,具备丰富的聚合函数,支持相似性匹配、频域分析等专业时序处理。

(4)接口丰富,简单易用

支持JDBC接口、Thrift API接口和SDK等多种接口。采用类SQL语句,在标准SQL的语句上增加了对于时间滑动窗口的统计等时序处理常用的功能,提供了系统使用效率。Thrift API接口支持Java、C\C++、Python、C#等多语言接口调用。

(5)低存储成本

IoTDB独立研发的TsFile时序文件存储格式,专门针对时序处理处理做了优化,基于列式存储,支持显式的数据类型声明,不同数据类型自动匹配SNAPPY、LZ4、GZIP、SDT等不同的压缩算法,可实现1:150甚至更高的压缩比(数据精度进一步降低的情况下),极大地降低了用户的存储成本。例如某用户原来用9台KariosDB服务器存储的时序数据,IoTDB用1台同等配置的服务器即可轻松实现。

(6)云边端多形态部署

IoTDB独有的轻量级架构设计保障了IoTDB可以轻松实现“一套引擎打通云边端,一份数据兼容全场景”。在云服务中心,IoTDB可以采用集群部署,充分发挥云的集群处理优势;在边缘计算位置,IoTDB可以在边缘服务器上部署单机IoTDB,也可以部署少量节点的集群版,具体视边缘服务器配置而定;在设备终端,IoTDB可以TsFile文件的形态直接嵌入到终端设备的本地存储中,并直接被设备终端的直接读写TsFile文件,不需要IoTDB数据库服务器的启动运行,极大地减少了对终端设备处理能力的要求。由于TsFile文件格式开放,终端任意语言和开发平台可以直接读写TsFile的二进制字节流,也可以利用TsFile自带的SDK进行读写,对外甚至可以通过FTP将TsFile文件发送到边缘或云服务中心。

(7)查询分析一体化

IoTDB一份数据同时支持实时读写与分布式计算引擎分析,TsFile与IoTDB引擎的松耦合设计保障了一方面IoTDB可以利用专有的时序数据处理引擎对时序数据进行高效写入和查询,同时TsFile也可以被Flink、Kafka、Hive、Pulsar、RabbitMQ、RocketMQ、Hadoop、Matlab、Grafana、Zeepelin等大数据相关组件进行读写分析,极大地提升了IoTDB的查询分析一体化能力和生态扩展能力。

MRS IoTDB的整体架构

MRS IoTDB在Apache IoTDB已有架构的基础上,融合MRS Manager强大的日志管理、运维监控、滚动升级、安全加固、高可用保障、灾备恢复、细粒度权限管控、大数据生态集成、资源池优化调度等企业级核心能力,对Apache IoTDB内核架构尤其是分布式集群架构做了大量的重构优化,在稳定性、可靠性、可用性和性能方面做了大量的系统级增强。

(1)接口兼容性:

进一步完善北向接口和南向接口,支持JDBC、Cli、API、SDK、MQTT、CoAP、Https等多种访问接口,进一步完善类SQL语句,兼容大部分Influx SQL,支持批量导入导出

(2)分布式对等架构:

MRS IoTDB在基于Raft协议的基础上,采用了改进的Multi-Raft协议,并对Muti-Raft协议的底层实现进行了优化,采用了Cache Leader等优化策略在保障无单节故障的基础上,进一步提升MRS IoTDB数据查询路由的性能;同时,对强一致性、中等一致性和弱一致性策略进行了细粒度优化;对一致性哈希算法加入虚拟节点策略避免数据倾斜,同时融合了查表与哈希分区的算法策略,在提升集群高可用的基础上进一步保障集群调度的性能。

(3)双层粒度元数据管理:

MRS IoTDB时序数据库的架构设计与实现(1)

由于采用了对等架构,元数据信息自然分布在集群所有节点上进行存储,但是由于元数据的存储量较大会带来内存的较大消耗。为了平衡内存消耗与性能,MRS IoTDB采用了双层粒度元数据管理架构,首先在所有节点间进行时间序列组元数据的同步,其次在分区节点间进行时间序列元数据的同步。这样在查询元数据的时候,首先会基于时间序列组进行过滤树剪枝,大大减少搜寻空间,然后在进一步在过滤后的分区节点进行时间序列元数据的查询。

(4)本地磁盘高性能访问:

MRS IoTDB采用专用的TsFile文件格式进行时间序列优化存储,采用列存格式进行自适应编码与压缩,支持流水线优化访问和乱序数据高速插入

(5)HDFS生态集成:

MRS IoTDB支持HDFS文件读写,并对HDFS进行了本地缓存、短路读、HDFS I/O线程池等多种优化手段,全面提升MRS IoTDB对HDFS的读写性能,同时,MRS IoTDB支持华为OBS对象存储并进行了更加高性能的深度优化。

在HDFS集成的基础上,MRS IoTDB支持Spark、Flink、Hive等MRS组件对TsFile的高效读写。

(6)多级权限管控:

支持存储组、设备、传感器等多级权限管控

支持创建、删除、查询等多级操作

支持Kerberos认证

支持Ranger权限架构

(7)云边端部署:

支持云边端灵活部署,边缘部分可以基于华为的IEF产品进行对接,也可以直接部署在华为的IES中。

MRS IoTDB集群版支持动态扩缩容,可以为云边端提供更加灵活的部署支持。

MapReduce 数据库 架构设计

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:全面了解Nginx主要应用场景
下一篇:一文彻底理解 Cookie、Session、Token
相关文章