word近义词功能怎么用(通过word文档找英文近义词)
565
2022-05-29
项目原来是基于一个挺老的项目基础做的迭代二次开发,原来使用的是庖丁分词,这个分词库已经很久没人更新了,而且和高版本的lucene也有兼容问题,所以处理同义词问题之前,我把原来使用的padding中文分词替换成word中文分词;
同义词处理逻辑实际代码主要参考的这两个帖子:
https://blog.csdn.net/yax405/article/details/43246237
https://blog.csdn.net/winnerspring/article/details/37567739
部分代码如下:
package org.apdplat.word.lucene; import java.io.IOException; import java.nio.file.Paths; import java.util.HashMap; import java.util.Map; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.Analyzer.TokenStreamComponents; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.Tokenizer; import org.apache.lucene.analysis.core.LowerCaseFilterFactory; import org.apache.lucene.analysis.synonym.SynonymFilterFactory; import org.apache.lucene.analysis.util.FilesystemResourceLoader; import org.apache.lucene.util.Version; import org.apdplat.word.segmentation.Segmentation; import org.apdplat.word.segmentation.SegmentationAlgorithm; import org.apdplat.word.segmentation.SegmentationFactory; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class SynonymsAnalyzer extends Analyzer { private static final Logger LOGGER = LoggerFactory.getLogger(ChineseWordAnalyzer.class); private Segmentation segmentation = null; public SynonymsAnalyzer() { this.segmentation = SegmentationFactory.getSegmentation(SegmentationAlgorithm.BidirectionalMinimumMatching); } public SynonymsAnalyzer(String segmentationAlgorithm) { try { SegmentationAlgorithm sa = SegmentationAlgorithm.valueOf(segmentationAlgorithm); this.segmentation = SegmentationFactory.getSegmentation(sa); } catch (Exception e) { this.segmentation = SegmentationFactory.getSegmentation(SegmentationAlgorithm.BidirectionalMinimumMatching); } } public SynonymsAnalyzer(SegmentationAlgorithm segmentationAlgorithm) { this.segmentation = SegmentationFactory.getSegmentation(segmentationAlgorithm); } public SynonymsAnalyzer(Segmentation segmentation) { this.segmentation = segmentation; } private static SynonymFilterFactory factory = null; protected static SynonymFilterFactory getSynonymsFactory() { if (factory == null) { Map paramsMap = new HashMap(); Version ver = Version.LUCENE_5_5_1; paramsMap.put("luceneMatchVersion", ver.toString()); paramsMap.put("synonyms", "./synonyms.txt"); paramsMap.put("expand", "true"); factory = new SynonymFilterFactory(paramsMap); try { FilesystemResourceLoader loader = new FilesystemResourceLoader(Paths.get("D:/RobotK/tomcat/synonyms", new String[0])); factory.inform(loader); } catch (IOException e) { e.printStackTrace(); } } return factory; } public static void reloadSynonymFilterFactory() { Map paramsMap = new HashMap(); Version ver = Version.LUCENE_5_5_1; paramsMap.put("luceneMatchVersion", ver.toString()); paramsMap.put("synonyms", "./synonyms.txt"); paramsMap.put("expand", "true"); factory = new SynonymFilterFactory(paramsMap); try { FilesystemResourceLoader loader = new FilesystemResourceLoader(Paths.get("D:/RobotK/tomcat/synonyms", new String[0])); factory.inform(loader); } catch (IOException e) { e.printStackTrace(); } } private static LowerCaseFilterFactory caseFactory = null; public static LowerCaseFilterFactory getCaseFilterFactory() { if (caseFactory == null) { Version ver = Version.LUCENE_5_5_1; Map
其他参考的帖子有:
https://blog.csdn.net/u011066470/article/details/60963439
http://www.hankcs.com/program/java/lucene-synonymfilterfactory.html
https://blog.csdn.net/yax405/article/details/43246237
https://blog.csdn.net/liyantianmin/article/details/59485799
https://github.com/ysc/word/blob/master/src/main/java/org/apdplat/word/lucene/ChineseWordAnalyzer.java
https://blog.csdn.net/winnerspring/article/details/37567739
https://my.oschina.net/apdplat/blog/228619
http://www.hankcs.com/program/java/lucene-synonymfilterfactory.html
在Lucene4.6中通过SynonymFilterFactory实现中文同义词非常方便,只需几行代码和一个同义词词典。这个词典还能在Lucene中实现一定程度的拼写纠错,提升搜索体验。在下面这个例子中我们从磁盘载入一个同义词词典,并且对“其实hankcs似好人”这句话进行stream化以供索引,同时还对其中的拼写错误“似->是”做出纠正。
首先是位于./data/synonyms.txt路径下的同义词词典:
我,俺,hankcs似,is,are => 是好人,好心人,热心人
可以看出上面有两种词典格式:
通过,分割的可拓展同义词
比如“我,俺,hankcs”代表着这三个词是同义词,并且任何一个词可以被expand(拓展)为其他三个。如果expand设为false的话,则这三个词都会被统一替换为第一个词,也就是“我”。
通过=>收缩的不可拓展同义词
比如“似,is,are => 是”代表这三个词同义,并且无视expand参数,统一会被替换为“是”
然后是加载代码
package com.hankcs.test; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.core.WhitespaceAnalyzer; import org.apache.lucene.analysis.synonym.SynonymFilterFactory; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.analysis.util.FilesystemResourceLoader; import org.apache.lucene.util.Version; import org.apache.uima.annotator.WhitespaceTokenizer; import java.io.IOException;import java.io.StringReader; import java.util.HashMap;import java.util.Map; /** * @author hankcs */ public class TestSynonyms{ private static void displayTokens(TokenStream ts) throws IOException { CharTermAttribute termAttr = ts.addAttribute(CharTermAttribute.class); OffsetAttribute offsetAttribute = ts.addAttribute(OffsetAttribute.class); ts.reset(); while (ts.incrementToken()) { String token = termAttr.toString(); System.out.print(offsetAttribute.startOffset() + "-" + offsetAttribute.endOffset() + "[" + token + "] "); } System.out.println(); ts.end(); ts.close(); } public static void main(String[] args) throws Exception { String testInput = "其实 hankcs 似 好人"; Version ver = Version.LUCENE_46; Map
输出:
0-2[其实] 3-9[我] 3-9[俺] 3-9[hankcs] 10-11[是] 12-14[好人] 12-14[好心人] 12-14[热心人]
由于 我 俺 hankcs 三个词是同一个意思,所以它们被视为同一个term,并且它们的偏移相同,都是3->9,这个长度取决于原来的词 hankcs 的长度。
https://blog.csdn.net/yax405/article/details/43246237
https://blog.csdn.net/u010366796/article/details/44937025
http://www.voidcn.com/article/p-txqtdabn-bbo.html
http://blog.csdn.net/winnerspring/article/details/37521101
http://www.voidcn.com/article/p-pjrzypvg-bbo.html
http://blog.csdn.net/winnerspring/article/details/37567739
http://blog.csdn.net/hu948162999/article/details/41283597
http://www.voidcn.com/article/p-xrordklc-bah.html
https://iamyida.iteye.com/blog/2197355
https://cloud.tencent.com/info/034aa996312ba4928c57ae831d6acedf.html
lucene 同义词的索引
public interface SynonymEngine { String[] getSynonyms(String key); }
public class SynonymEngineImpl implements SynonymEngine { private static HashMap
public class SynonymFilter extends TokenFilter { private SynonymEngine engine; private CharTermAttribute ct; private PositionIncrementAttribute pt; private Stack
public class SynonymAnalyzer extends Analyzer { private SynonymEngine engine; public SynonymAnalyzer(SynonymEngine engine) { this.engine = engine; } @Override public TokenStream tokenStream(String s, Reader reader) { // TODO Auto-generated method stub return new SynonymFilter(new StopFilter(Version.LUCENE_35, new LowerCaseFilter(Version.LUCENE_35, new StandardFilter(Version.LUCENE_35, new StandardTokenizer(Version.LUCENE_35,reader))) ,StopAnalyzer.ENGLISH_STOP_WORDS_SET),engine); } }
public class TestSynonym { private RAMDirectory directory; @Test public void init() { directory = new RAMDirectory(); SynonymEngine engine = new SynonymEngineImpl(); IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_35,new SynonymAnalyzer(engine)); String content = "The quick brown fox jumps over the lazy dog"; try { IndexWriter writer = new IndexWriter(directory,config); Document doc = new Document(); doc.add(new Field("content",content,Field.Store.YES,Field.Index.ANALYZED)); writer.addDocument(doc); writer.close(); IndexReader reader = IndexReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); TopDocs docs = searcher.search(new TermQuery(new Term("content","pooch")),10); for(ScoreDoc sd:docs.scoreDocs) { Document d = searcher.doc(sd.doc); System.out.println(d.get("content")); } } catch (CorruptIndexException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (LockObtainFailedException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
http://www.itzk.com/b/1109/581983.shtml
Lucene的同义词分析器讲解
这个分析器用SynonymFilter过滤器对StandardAnalyzer类进行封装,当向这个过滤器输入各个项时,会对这些项进行缓冲,并使用栈存储这些项的同义词[code]
public class SynonymFilter extends TokenFilter{
publicstatic final String TOKEN_TYPE_SYNONYM="SYNONYM";
privateStack synonymStack;
privateSynonynEngine engine;
publicSynonymFilter(TokenStream in,SynonymEngine engine){
super(in);
synonymStack=new Stack();//缓存同义词
this.engine=engine;
}
publicTOken next() throws IOException{
if (synonymStack.size()>0){//如何还有当前词的同义词没有输出,则输出
return (Token) synonymStack.pop();
}
Token token=input.next();//读取新词
if (token==null) {
return null;
}
addAliasesToStack(token);//存储新词的同义词
returntoken;
}
private voidaddAliasesToStack(Token token) throws IOException{
String[] synonyms=engine.getSynonyms(token.termText());
if (synonyms==mull) return;
for (int i=0;i Token synToken=newToken(synonyms[i],token.startOffset(),token.endOffset(),TOKEN_TYPE_SYNONYM); synToken.setPositionIncrement(0); synonymStack.push(synToken); } }[/code]以下这个接口是关键,可以自由实现,目的是返回s的同义词数组[code]public interface SynonymEngine{ String[] getSynonyms(String s) throws IOException; } [/code]对于这个接口要小心使用,在查询时不必列出所有的同义词,如下例[code]Query query=QueryParser.parse("\"foxjumps\"","content",synonymAnalyzer); Hits hits=searcher.search(query);[/code]是会出错的,找不到任何结果,因为QueryParser不会区别位置增量,所以位置增量为0这一个表明同义的特征无法体现,会将"foxjumps"直接加上同义词解释为"fox jumps hops leaps" https://stackoverrun.com/cn/q/4705011 我想弄清楚lucene的分析仪是如何工作的? 我的问题是,lucene如何处理同义词?这里的情况是: 我们有一个词和多词 单:富=酒吧 多的话:富巴= foobar的 对于单个的词: 是否Lucene的扩大索引记录或不?我猜如果一个查询有一个像“foo”这样的词,它也会在查询中添加“bar”。我不知道是否索引或不索引? 对于多话: 是否Lucene的扩大查询和索引?例如,如果我们有“富吧”,它是否将foobar添加到索引/查询? 我的第二个问题是:Lucene使用一个标记流并将它们提供给小写过滤器之类的过滤器。我的问题是lucene如何找到多词?比如它是如何发现“foo bar”是一个多词的? SynonymFilter可任选,保持原有的单词,并添加同义词到的TokenStream中,通过设置keepOrig =真(见SynonymMap.Builder.add())。此行为可能会导致PhraseQueries等问题,请参阅SynonymFilter文档中的第注意事项。 如果您使用相同的Analyzer进行查询和编制索引,那么写入索引的查询和文档当然都会以同样的方式处理。 SynonymFilter与keepOrig设置为true是少数几个Analyzers之一,经常在查询和索引之间不合时宜地应用,但这完全取决于您的实现。 至于如何实施,source code可供您使用。 来源 分享 创建 24 6月. 13 femtoRgon 0 它是如何处理多个同义词的?像“纽约”=“纽约” 沃尔玛=沃尔玛=沃尔玛 ,因为它通过令牌执行过滤令牌。我不知道它是如何找到多个单词的同义词 – Mr.Boy 24 6月. 13 0 有没有你对它的行为感到困惑,或者你想知道实现如何处理令牌流?如果是后者,那就是为什么我提供了链接到源代码的原因。如果前者贪婪地搜索最长匹配,它可以从给定的位置(也就是说,如果你有规则'foo' - >'bar','foo bar' - >'foobar',那么'foo bar'会变成'foobar',而不是'bar bar')。我不相信它支持'wal mart = wal-mart = walmart'这样的东西(同义词规则有一个输入和一个输出)。如果有什么特别的要问的话,继续。 – femtoRgon 24 6月. 13 0 我的问题是它如何处理令牌流?因为我猜同义词过滤器一个接一个地得到令牌,而且它是无状态的。例如,如果当前令牌为“新”,它如何检查下一个令牌以查看它是否是“约克”?
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。