搭建跨境电商系统的关键要素与实用建议探讨
3152
2022-08-06
「本文重点介绍关于数据分析软件。」
说到数据分析工具,被提及频率最高且使用最多的不过是这几种:Excel、SQL、Python、R、K-Lab、Tableau、SPSS、SAS 等。
Excel
Excel 作为入门级的工具,是最基础也是最主要的数据分析工具,它可以进行各种数据的处理、统计分析和辅助决策操作,数据透视图是Excel中最重要的工具,如果不考虑性能和数据量,它可以处理绝大部分的分析工作。正所谓初级学图表,中级学函数透视表,高级学习VBA。EXCEL功能的强大只有那些正真学过它的人才能知道。
SQL
毫不夸张地说,SQL是数据方向所有岗位的必备技能,入门比较容易,概括起来就是增删改查。SQL需要掌握的知识点主要包括数据的定义语言、数据的操纵语言以及数据的控制语言;在数据的操纵语言中,理解SQL的执行顺序和语法顺序,熟练掌握SQL中的重要函数,理解SQL中各种join的异同。总而言之,要想入行数据分析,SQL是必要技能。
Python
Python的人气如今是越来越高,几乎无人不知,这里就不做太多的阐述了。Python高人气的同时也诞生了大量的 Python 大神,Python 工具库也非常丰富,这也为 Python 的用途广泛打下了基础。相比 Excel、SQL 而言,Python 的综合功能最为强大,也更加便捷高效,能够大大提升工作效率。
R
R 与 Python 不同,Python 是一套较为平衡的语言,触及方方面面,但 R 在统计方面较为突出。R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比Python在这方面贫乏不少。
K-Lab
K-Lab是基于Jupyter Notebook研发的一款数据分析及AI开发协同工具,目前可直接在网站上在线运行,无需下载软件,这一点对初学者而言非常友好。K-Lab 目前可使用的主要是 Python 或 R 语言,也是大部分用于数据可视化所使用的语言,K-Lab 中同样含有各类做图的包,如 Matplotlib、Seaborn 和 Pandas等等,无需自行安装,非常便捷。
Tableau
Tableau这款软件 与 Excel 的数据透视图有异曲同工之处,都是可以直接用鼠标来选择行、列标签来生成各种不同的图形图表。但Tableau的设计、色彩及操作界面给人一种简单,清新的感觉,做出来的图比 excel 的更美观。
SPSS
SPSS界面操作比较简单,只要认识软件基本界面和功能,准备好数据输入进行分析,软件会就自动给你算出分析结果。但要想读透SPSS给出的分析结果,需要比较扎实的统计学知识。侧重于统计分析类模型,能解决绝大部分统计学问题。
SAS
SAS 作为统计分析系统,是为所有需要进行数据处理、分析的工作人员提供的一种易学易用的软件系统,SAS的功能较 SPSS 而言更强大一些,它的语句针对性也比较强。SAS数据分析功能主要包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。
数据分析的软件有哪些,6款常见数据分析的软件工具
“数据分析” 可谓是当今社会一个超级火爆的岗位,不论是科班的,还是非科班的,都想从事这个行业,毕竟都觉得这个行业赚钱多嘛。
“数据分析” 大致可以分为业务和技术两个方向,不管你是从事哪个方向,都对技能有一定的要求。业务方向,像数据运营、商业分析、产品经理等,对技术的要求相对来说低一点,编程工具你只要会用即可(肯定是越精通越好)。技术方向,像数据算法工程师、数据挖掘工程师等,对技术的要求就很高了,必须要有很好的编程能力。
工欲善其事必先利其器,说起数据分析工具,大家都会感觉很迷茫,有这么多数据分析工具,我应该学习哪个工具,它们之间的区别到底是什么?
今天我们从 “工具” 层面带大家盘点一下,作为一名数据分析师,应该学习哪些工具呢?
一、Excel工具
说起用什么做数据分析,很多人的脑海中都会不约而同地想到Python、R、SQL、Hive等看似很难掌握的数据分析工具,它们就像数据分析路上的拦路虎一样,让人踟蹰不前。
其实,在众多的数据分析工具中,Excel属于最常用、最基础、最易上手的一款数据分析工具。Excel的功能十分强大,它不仅提供了众多的数据处理功能,像Excel函数能够帮助我们做数据整理,数据透视表帮助我们快速、高效的做各种维度分析,形形色色的图表能帮我们形象地展示出数据背后隐藏的规律,同时Excel还有很专业的数据分析工具库,包括描述性统计分析、相关系数分析等。
Excel对于转行数据分析的小白来说,应该是最友好的。大家都知道“转行”其实是一件很困难的事儿,但是你学会了Excel,是完全可以找到一份“数据”相关的工作的,只有踏进数据领域,你才有可能从事其它更多的数据岗位。
二、BI工具
BI工具是专门按照数据分析的流程进行设计的,也是专门用于数据分析的工具。仔细观察这些工具后,它们的基本流程是:【数据处理】-【数据清洗】-【数据建模】-【数据可视化】。
关于BI工具,其实有很多你估计已经用到过,比如说Tableau、Power BI,还有帆软FineBI等。今天我们就分别带着大家来盘点一下,这三款工具。
1、Tableau
Tableau是一款交互式数据可视化软件,它的本质其实也是Excel的数据透视表和数据透视图。
Tableau也是很好的延续了Excel,只需要简单地拖拽,就能很快地实现数据的分类汇总,然后拖拽实现各种图形的绘制,并且可以实现不同图表之间的联合。
Tableau同时支持数百种数据连接器,包括在线分析处理(OLAP)和大数据(例如NoSQL,Hadoop)以及云数据,至少现在你能学到的数据库软件,Tableau基本都能够实现与其数据之间的互动。
2、Power BI
Power-BI是一款(BI)商业智能软件,于2014年发布,旨在为用户提供交互式的可视化和商业智能,简单的数据共享,数据评估和可扩展的仪表板等功能。。
大家可能都知道,Power BI以前是一款Excel插件,依附于Excel,比如Power Query,PowerPrivot, Power View和Power Map等,这些插件让Excel如同装上了翅膀,瞬间高大上,慢慢地就发展成为现在的Power BI数据可视化工具。
Power BI 简单且快速,能够从 Excel电子表格或本地数据库创建图表。同时Power BI也是可靠的、企业级的,可进行丰富的建模和实时分析,及自定义开发。因此它既是你的个人报表和可视化工具,还可用项目、部门或整个企业背后的分析和决策引擎。
同时,无论你的数据是简单的 Excel电子表格,还是基于云和本地混合数据仓库的集合, Power BI都可以让你轻松地连接到数据源,直观看到或发现数据的价值,与任何所希望的人进行共享。
3、FineReport
帆软是业内做报表比较久的一家公司,使用类excel风格的界面,可添加图表和数据源,也可实现大屏效果。
其实它的类Excel风格界面,应该是它区别于Tableau工具的一个很重要的点。FineReport 通过直接连接到各种数据库,就能方便快捷地自定义各种样式,从而制作周报、月报和季报、年报。
用过FineReport 的朋友,还会有另外一种体会,它的图形效果比Tableau要酷炫的多,操作起来同样也是那样的方便。
另外,FineReport 的个人版本是完全免费的,并且所有功能都是开放的,大家赶紧下去试试吧。
4、FineBI
关于FineBI,这是目前市面上应用最为广泛的自助式BI工具之一,类似于国外的Tableau等BI分析工具,但FineBI在协同配合,数据权限上,能更好的解决国内企业的情况。
但严格定义来讲,它其实是一款自助式BI。支持Hadoop、GreenPlumn、Kylin、星环等大数据平台,支持SAP HANA、SAP BW、SSAS、EssBase等多维数据库,支持MongoDB、SQLite、Cassandra等NOSQL数据库,也支持传统的关系型数据库、程序数据源等。
5、Python & R
其实不管是Excel,还是介绍的三款BI工具,它们都是为了执行特定功能,而设计出来的。如果说某一天,既定功能不能很好,或者说不能满足你的需求,那么应该怎么办呢?
这就需要我们了解,并学习一点编程语言了,最大的优势就在于:它非常强大和灵活。不管是R或者 Python,都有很多包供我们调用,同时也可以自定义函数,实现我们的某些需求。
「上述就是小编为大家整理的数据分析软件」
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。