【PyTorch基础教程1】线性模型(学不会来打我啊)

网友投稿 665 2022-05-29

文章目录

一、线性模型

二、绘图工具

三、作业

Reference

一、线性模型

不要小看简单线性模型哈哈,虽然这讲我们还没正式用到pytorch,但是用到的前向传播、损失函数、两种绘loss图等方法在后面是很常用的。

对下面的代码说明:

zip函数可以将x_data和y_data组合元组列表,在for循环中每次遍历就是对于列表中的每个元组。

函数forward()中,有一个变量w。这个变量最终的值是从for循环中传入的。

# -*- coding: utf-8 -*- """ Created on Tue Oct 12 14:30:13 2021 @author: 86493 """ import numpy as np import matplotlib.pyplot as plt x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] def forward(x): return x * w def loss(x, y): y_pred = forward(x) return (y_pred - y) * (y_pred - y) # 保存权重 w_list = [] # 保存权重的损失函数值 mse_list = [] # 穷举w值对应的损失函数MSE for w in np.arange(0.0, 4.1, 0.1): print('w = ', w) loss_sum = 0 for x_val, y_val in zip(x_data, y_data): # 为了打印y预测值,其实loss里也计算了 y_pred_val = forward(x_val) loss_val = loss(x_val, y_val) loss_sum += loss_val print('\t', x_val, y_val, y_pred_val, loss_val) print('MSE = ', loss_sum / 3) print('='*60) w_list.append(w) mse_list.append(loss_sum / 3) # 绘loss变化图,横坐标是w,纵坐标是loss plt.plot(w_list, mse_list) plt.ylabel('Loss') plt.xlabel('w') plt.show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

刚才对应的打印结果为:

w = 0.0 1.0 2.0 0.0 4.0 2.0 4.0 0.0 16.0 3.0 6.0 0.0 36.0 MSE = 18.666666666666668 ============================================================ w = 0.1 1.0 2.0 0.1 3.61 2.0 4.0 0.2 14.44 3.0 6.0 0.30000000000000004 32.49 MSE = 16.846666666666668 ============================================================ w = 0.2 1.0 2.0 0.2 3.24 2.0 4.0 0.4 12.96 3.0 6.0 0.6000000000000001 29.160000000000004 MSE = 15.120000000000003 ============================================================ w = 0.30000000000000004 1.0 2.0 0.30000000000000004 2.8899999999999997 2.0 4.0 0.6000000000000001 11.559999999999999 3.0 6.0 0.9000000000000001 26.009999999999998 MSE = 13.486666666666665 ============================================================ w = 0.4 1.0 2.0 0.4 2.5600000000000005 2.0 4.0 0.8 10.240000000000002 3.0 6.0 1.2000000000000002 23.04 MSE = 11.946666666666667 ============================================================ w = 0.5 1.0 2.0 0.5 2.25 2.0 4.0 1.0 9.0 3.0 6.0 1.5 20.25 MSE = 10.5 ============================================================ w = 0.6000000000000001 1.0 2.0 0.6000000000000001 1.9599999999999997 2.0 4.0 1.2000000000000002 7.839999999999999 3.0 6.0 1.8000000000000003 17.639999999999993 MSE = 9.146666666666663 ============================================================ w = 0.7000000000000001 1.0 2.0 0.7000000000000001 1.6899999999999995 2.0 4.0 1.4000000000000001 6.759999999999998 3.0 6.0 2.1 15.209999999999999 MSE = 7.886666666666666 ============================================================ w = 0.8 1.0 2.0 0.8 1.44 2.0 4.0 1.6 5.76 3.0 6.0 2.4000000000000004 12.959999999999997 MSE = 6.719999999999999 ============================================================ w = 0.9 1.0 2.0 0.9 1.2100000000000002 2.0 4.0 1.8 4.840000000000001 3.0 6.0 2.7 10.889999999999999 MSE = 5.646666666666666 ============================================================ w = 1.0 1.0 2.0 1.0 1.0 2.0 4.0 2.0 4.0 3.0 6.0 3.0 9.0 MSE = 4.666666666666667 ============================================================ w = 1.1 1.0 2.0 1.1 0.8099999999999998 2.0 4.0 2.2 3.2399999999999993 3.0 6.0 3.3000000000000003 7.289999999999998 MSE = 3.779999999999999 ============================================================ w = 1.2000000000000002 1.0 2.0 1.2000000000000002 0.6399999999999997 2.0 4.0 2.4000000000000004 2.5599999999999987 3.0 6.0 3.6000000000000005 5.759999999999997 MSE = 2.986666666666665 ============================================================ w = 1.3 1.0 2.0 1.3 0.48999999999999994 2.0 4.0 2.6 1.9599999999999997 3.0 6.0 3.9000000000000004 4.409999999999998 MSE = 2.2866666666666657 ============================================================ w = 1.4000000000000001 1.0 2.0 1.4000000000000001 0.3599999999999998 2.0 4.0 2.8000000000000003 1.4399999999999993 3.0 6.0 4.2 3.2399999999999993 MSE = 1.6799999999999995 ============================================================ w = 1.5 1.0 2.0 1.5 0.25 2.0 4.0 3.0 1.0 3.0 6.0 4.5 2.25 MSE = 1.1666666666666667 ============================================================ w = 1.6 1.0 2.0 1.6 0.15999999999999992 2.0 4.0 3.2 0.6399999999999997 3.0 6.0 4.800000000000001 1.4399999999999984 MSE = 0.746666666666666 ============================================================ w = 1.7000000000000002 1.0 2.0 1.7000000000000002 0.0899999999999999 2.0 4.0 3.4000000000000004 0.3599999999999996 3.0 6.0 5.1000000000000005 0.809999999999999 MSE = 0.4199999999999995 ============================================================ w = 1.8 1.0 2.0 1.8 0.03999999999999998 2.0 4.0 3.6 0.15999999999999992 3.0 6.0 5.4 0.3599999999999996 MSE = 0.1866666666666665 ============================================================ w = 1.9000000000000001 1.0 2.0 1.9000000000000001 0.009999999999999974 2.0 4.0 3.8000000000000003 0.0399999999999999 3.0 6.0 5.7 0.0899999999999999 MSE = 0.046666666666666586 ============================================================ w = 2.0 1.0 2.0 2.0 0.0 2.0 4.0 4.0 0.0 3.0 6.0 6.0 0.0 MSE = 0.0 ============================================================ w = 2.1 1.0 2.0 2.1 0.010000000000000018 2.0 4.0 4.2 0.04000000000000007 3.0 6.0 6.300000000000001 0.09000000000000043 MSE = 0.046666666666666835 ============================================================ w = 2.2 1.0 2.0 2.2 0.04000000000000007 2.0 4.0 4.4 0.16000000000000028 3.0 6.0 6.6000000000000005 0.36000000000000065 MSE = 0.18666666666666698 ============================================================ w = 2.3000000000000003 1.0 2.0 2.3000000000000003 0.09000000000000016 2.0 4.0 4.6000000000000005 0.36000000000000065 3.0 6.0 6.9 0.8100000000000006 MSE = 0.42000000000000054 ============================================================ w = 2.4000000000000004 1.0 2.0 2.4000000000000004 0.16000000000000028 2.0 4.0 4.800000000000001 0.6400000000000011 3.0 6.0 7.200000000000001 1.4400000000000026 MSE = 0.7466666666666679 ============================================================ w = 2.5 1.0 2.0 2.5 0.25 2.0 4.0 5.0 1.0 3.0 6.0 7.5 2.25 MSE = 1.1666666666666667 ============================================================ w = 2.6 1.0 2.0 2.6 0.3600000000000001 2.0 4.0 5.2 1.4400000000000004 3.0 6.0 7.800000000000001 3.2400000000000024 MSE = 1.6800000000000008 ============================================================ w = 2.7 1.0 2.0 2.7 0.49000000000000027 2.0 4.0 5.4 1.960000000000001 3.0 6.0 8.100000000000001 4.410000000000006 MSE = 2.2866666666666693 ============================================================ w = 2.8000000000000003 1.0 2.0 2.8000000000000003 0.6400000000000005 2.0 4.0 5.6000000000000005 2.560000000000002 3.0 6.0 8.4 5.760000000000002 MSE = 2.986666666666668 ============================================================ w = 2.9000000000000004 1.0 2.0 2.9000000000000004 0.8100000000000006 2.0 4.0 5.800000000000001 3.2400000000000024 3.0 6.0 8.700000000000001 7.290000000000005 MSE = 3.780000000000003 ============================================================ w = 3.0 1.0 2.0 3.0 1.0 2.0 4.0 6.0 4.0 3.0 6.0 9.0 9.0 MSE = 4.666666666666667 ============================================================ w = 3.1 1.0 2.0 3.1 1.2100000000000002 2.0 4.0 6.2 4.840000000000001 3.0 6.0 9.3 10.890000000000004 MSE = 5.646666666666668 ============================================================ w = 3.2 1.0 2.0 3.2 1.4400000000000004 2.0 4.0 6.4 5.760000000000002 3.0 6.0 9.600000000000001 12.96000000000001 MSE = 6.720000000000003 ============================================================ w = 3.3000000000000003 1.0 2.0 3.3000000000000003 1.6900000000000006 2.0 4.0 6.6000000000000005 6.7600000000000025 3.0 6.0 9.9 15.210000000000003 MSE = 7.886666666666668 ============================================================ w = 3.4000000000000004 1.0 2.0 3.4000000000000004 1.960000000000001 2.0 4.0 6.800000000000001 7.840000000000004 3.0 6.0 10.200000000000001 17.640000000000008 MSE = 9.14666666666667 ============================================================ w = 3.5 1.0 2.0 3.5 2.25 2.0 4.0 7.0 9.0 3.0 6.0 10.5 20.25 MSE = 10.5 ============================================================ w = 3.6 1.0 2.0 3.6 2.5600000000000005 2.0 4.0 7.2 10.240000000000002 3.0 6.0 10.8 23.040000000000006 MSE = 11.94666666666667 ============================================================ w = 3.7 1.0 2.0 3.7 2.8900000000000006 2.0 4.0 7.4 11.560000000000002 3.0 6.0 11.100000000000001 26.010000000000016 MSE = 13.486666666666673 ============================================================ w = 3.8000000000000003 1.0 2.0 3.8000000000000003 3.240000000000001 2.0 4.0 7.6000000000000005 12.960000000000004 3.0 6.0 11.4 29.160000000000004 MSE = 15.120000000000005 ============================================================ w = 3.9000000000000004 1.0 2.0 3.9000000000000004 3.610000000000001 2.0 4.0 7.800000000000001 14.440000000000005 3.0 6.0 11.700000000000001 32.49000000000001 MSE = 16.84666666666667 ============================================================ w = 4.0 1.0 2.0 4.0 4.0 2.0 4.0 8.0 16.0 3.0 6.0 12.0 36.0 MSE = 18.666666666666668 ============================================================

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

【PyTorch基础教程1】线性模型(学不会来打我啊)

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

二、绘图工具

在深度学习中,我们一般没有打印上面这种loss图(

一般横坐标为epoch,而上面这种图可以用于检测最优超参数是多少

),下图这里loss虽然随着epoch增大而减少,但是在开发集上的效果却可能是先减小后增大的,所以应该找中间这个画竖线的点。

PS:可以学习模型训练可视化visdom工具,训练还要注意存盘的问题(如防止要训练7天,但在第6天报错了)。

画图除了用matplotlib.pyplot,还经常使用pandas的dataframe.plot,如下:

# 增加loss折线图 import pandas as pd df = pd.DataFrame(columns = ["Loss"]) # columns列名 df.index.name = "Epoch" for epoch in range(1, 201): loss = train() #df.loc[epoch] = loss.item() df.loc[epoch] = loss.item() df.plot()

1

2

3

4

5

6

7

8

9

上面这种loss图也是最典型的.

三、作业

实现线性模型( y = w x + b y=wx+b y=wx+b)并输出loss的3D图像。

# -*- coding: utf-8 -*- """ Created on Tue Oct 12 17:04:46 2021 @author: 86493 """ import numpy as np import matplotlib.pyplot as plt; from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # 线性模型,多了个b def forward(x,w,b): return x * w + b # 损失函数,此处没变 def loss(x, y, w, b): y_pred = forward(x, w, b) return (y_pred - y) * (y_pred - y) # 单独写出mse函数,为了计算不同w和b情况下对应的mse def mse(w,b): l_sum = 0 for x_val, y_val in zip(x_data, y_data): y_pred_val = forward(x_val,w,b) loss_val = loss(x_val, y_val,w,b) l_sum += loss_val print('\t', x_val, y_val, y_pred_val, loss_val) print('MSE=', l_sum / 3) return l_sum/3 #迭代取值,计算每个w取值下的x,y,y_pred,loss_val mse_list = [] # 画图 # 1.定义网格化数据 b_list=np.arange(-30,30,0.1) w_list=np.arange(-30,30,0.1); # 2.生成网格化数据 xx, yy = np.meshgrid(b_list, w_list, sparse=False, indexing='xy') # 3.每个点的对应高度 zz=mse(xx,yy) fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(xx, yy, zz, rstride=1, # rows stride 指定行的跨度为1,只能是int cstride=1, # columns stride 指定列的跨度为1 cmap=cm.viridis) # 设置曲面的颜色 plt.show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Reference

[1] 3D图绘制:https://matplotlib.org/stable/tutorials/toolkits/mplot3d.html

[2] https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid

[3] Matplotlib3D作图-plot_surface(), .contourf(), plt.colorbar()

[4]【matplotlib】如何进行颜色设置选择cmap

[5] https://blog.csdn.net/Pin_BOY/article/details/119707358

[6] http://biranda.top/archives/page/2/

pytorch 机器学习

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:倾听城市生态数据的律动
下一篇:2021-01-08:cpu和gpu有什么区别?
相关文章