python如何删除excel中不满足要求的工作簿(excel怎么删除工作表里不需要的)
571
2022-05-29
里面的一个时间段内说明非常重要,这里假设这个时间段是一秒,所以本文指的并发是指服务器在一秒中处理的请求数量,即rps,那么rps高,本文就认为高并发.
啥?这不是你认为的高并发, 出门左转。
操作系统到底在干啥?
如果由笔者来概括,操作系统大概做了两件事情,计算与IO,任何具体数学计算或者逻辑判断,或者业务逻辑都是计算,而网络交互,磁盘交互,人机之间的交互都是IO。
高并发的瓶颈在哪?
根据笔者经验,大多数时候在IO上面。注意,这里说得是大多数,不是说绝对。
因为大多数时候业务本质上都是从数据库或者其他存储上读取内容,然后根据一定的逻辑,将数据返回给用户,比如大多数web内容。而大多数逻辑的交互都算不上计算量多大的逻辑,CPU的速度要远远高于内存IO,磁盘IO,网络IO, 而这些IO中网络IO最慢。
在根据上面的笔者对操作系统的概述,当并发高到一定的程度,根据业务的不同,比如计算密集,IO密集,或两者皆有,因此瓶颈可能出在计算上面或者IO上面,又或两者兼有。
而本文解决的高并发,是指IO密集的高并发瓶颈,因此,计算密集的高并发并不在本文的讨论范围内。
为了使本文歧义更少,这里的IO主要指网络IO.
Python怎么处理高并发?
使用协程, 事件循环, 高效IO模型(比如多路复用,比如epoll), 三者缺一不可。
很多时候,笔者看过的文章都是说协程如何如何,最后告诉我一些协程库或者asyncio用来说明协程的威力,最终我看懂了协程,却还是不知道它为啥能高并发,这也是笔者写本文的目的。
但是一切还是得从生成器说起,因为asyncio或者大多数协程库内部也是通过生成器实现的。
注意上面的三者缺一不可。
如果只懂其中一个,那么你懂了三分之一,以此类推,只有都会了,你才知道为啥协程能高并发。
生成器
生成器的定义很抽象,现在不懂没关系,但是当你懂了之后回过头再看,会觉得定义的没错,并且准确。下面是定义
摘自百度百科: 生成器是一次生成一个值的特殊类型函数。可以将其视为可恢复函数。
关于生成器的内容,本文着重于生成器实现了哪些功能,而不是生成器的原理及内部实现。
yield
简单例子如下
def gen_func(): yield 1 yield 2 yield 3if __name__ == '__main__': gen = gen_func() for i in gen: print(i) output:123
上面的例子没有什么稀奇的不是吗?yield像一个特殊的关键字,将函数变成了一个类似于迭代器的对象,可以使用for循环取值。
send, next
协程自然不会这么简单,python协程的目标是星辰大海,从上面的例之所以get不到它的野心,是因为你没有试过send, next两个函数。
首先说next
def gen_func(): yield 1 yield 2 yield 3if __name__ == '__main__': gen = gen_func() print(next(gen)) print(next(gen)) print(next(gen)) output:123
next的操作有点像for循环,每调用一次next,就会从中取出一个yield出来的值,其实还是没啥特别的,感觉还没有for循环好用。
不过,不知道你有没有想过,如果你只需要一个值,你next一次就可以了,然后你可以去做其他事情,等到需要的时候才回来再次next取值。
就这一部分而言,你也许知道为啥说生成器是可以暂停的了,不过,这似乎也没什么用,那是因为你不知到时,生成器除了可以抛出值,还能将值传递进去。
接下来我们看send的例子。
def gen_func(): a = yield 1 print("a: ", a) b = yield 2 print("b: ", b) c = yield 3 print("c: ", c) return "finish"if __name__ == '__main__': gen = gen_func() for i in range(4): if i == 0: print(gen.send(None)) else: # 因为gen生成器里面只有三个yield,那么只能循环三次。 # 第四次循环的时候,生成器会抛出StopIteration异常,并且return语句里面内容放在StopIteration异常里面 try: print(gen.send(i)) except StopIteration as e: print("e: ", e) output:1a: 12b: 23c: 3e: finish
send有着next差不多的功能,不过send在传递一个值给生成器的同时,还能获取到生成器yield抛出的值,在上面的代码中,send分别将None,1,2,3四个值传递给了生成器,之所以第一需要传递None给生成器,是因为规定,之所以规定,因为第一次传递过去的值没有特定的变量或者说对象能接收,所以规定只能传递None, 如果你传递一个非None的值进去,会抛出一下错误
TypeError: can't send non-None value to a just-started generator
从上面的例子我们也发现,生成器里面的变量a,b,c获得了,send函数发送将来的1, 2, 3.
如果你有事件循环或者说多路复用的经验,你也许能够隐隐察觉到微妙的感觉。
这个微妙的感觉是,是否可以将IO操作yield出来?由事件循环调度, 如果你能get到这个微妙的感觉,那么你已经知道协程高并发的秘密了.
但是还差一点点.嗯, 还差一点点了.
yield from
下面是yield from的例子
def gen_func(): a = yield 1 print("a: ", a) b = yield 2 print("b: ", b) c = yield 3 print("c: ", c) return 4def middle(): gen = gen_func() ret = yield from gen print("ret: ", ret) return "middle Exception"def main(): mid = middle() for i in range(4): if i == 0: print(mid.send(None)) else: try: print(mid.send(i)) except StopIteration as e: print("e: ", e)if __name__ == '__main__': main() output: 1a: 12b: 23c: 3ret: 4e: middle Exception
从上面的代码我们发现,main函数调用的middle函数的send,但是gen_func函数却能接收到main函数传递的值.有一种透传的感觉,这就是yield from的作用, 这很关键。
而yield from最终传递出来的值是StopIteration异常,异常里面的内容是最终接收生成器(本示例是gen_func)return出来的值,所以ret获得了gen_func函数return的4.但是ret将异常里面的值取出之后会继续将接收到的异常往上抛,所以main函数里面需要使用try语句捕获异常。而gen_func抛出的异常里面的值已经被middle函数接收,所以middle函数会将抛出的异常里面的值设为自身return的值,至此生成器的全部内容讲解完毕,如果,你get到了这些功能,那么你已经会使用生成器了。
小结
再次强调,本小结只是说明生成器的功能,至于具体生成器内部怎么实现的,你可以去看其他文章,或者阅读源代码.
io模型
Linux平台一共有五大IO模型,每个模型有自己的优点与确定。根据应用场景的不同可以使用不同的IO模型。
不过本文主要的考虑场景是高并发,所以会针对高并发的场景做出评价。
同步IO
同步模型自然是效率最低的模型了,每次只能处理完一个连接才能处理下一个,如果只有一个线程的话, 如果有一个连接一直占用,那么后来者只能傻傻的等了。所以不适合高并发,不过最简单,符合惯性思维。
非阻塞式IO
不会阻塞后面的代码,但是需要不停的显式询问内核数据是否准备好,一般通过while循环,而while循环会耗费大量的CPU。所以也不适合高并发。
多路复用
当前最流行,使用最广泛的高并发方案。
而多路复用又有三种实现方式, 分别是select, poll, epoll。
select,poll由于设计的问题,当处理连接过多会造成性能线性下降,而epoll是在前人的经验上做过改进的解决方案。不会有此问题。
不过select, poll并不是一无是处,假设场景是连接数不多,并且每个连接非常活跃,select,poll是要性能高于epoll的。
至于为啥,查看小结参考链接, 或者自行查询资料。
但是本文讲解的高并发可是指的连接数非常多的。
信号驱动式IO
很偏门的一个IO模型,不曾遇见过使用案例。看模型也不见得比多路复用好用。
异步非阻塞IO
用得不是很多,理论上比多路复用更快,因为少了一次调用,但是实际使用并没有比多路复用快非常多,所以为啥不使用广泛使用的多路复用。
小结
使用最广泛多路复用epoll, 可以使得IO操作更有效率。但是使用上有一定的难度。
至此,如果你理解了多路复用的IO模型,那么你了解python为什么能够通过协程实现高并发的三分之二了。
IO模型参考: https://www.jianshu.com/p/486b0965c296
select,poll,epoll区别参考: https://www.cnblogs.com/Anker/p/3265058.html
事件循环
上面的IO模型能够解决IO的效率问题,但是实际使用起来需要一个事件循环驱动协程去处理IO。
简单实现
下面引用官方的一个简单例子。
import selectorsimport socket# 创建一个selctor对象# 在不同的平台会使用不同的IO模型,比如Linux使用epoll, windows使用select(不确定)# 使用select调度IOsel = selectors.DefaultSelector()# 回调函数,用于接收新连接def accept(sock, mask): conn, addr = sock.accept() # Should be ready print('accepted', conn, 'from', addr) conn.setblocking(False) sel.register(conn, selectors.EVENT_READ, read)# 回调函数,用户读取client用户数据def read(conn, mask): data = conn.recv(1000) # Should be ready if data: print('echoing', repr(data), 'to', conn) conn.send(data) # Hope it won't block else: print('closing', conn) sel.unregister(conn) conn.close()# 创建一个非堵塞的socketsock = socket.socket() sock.bind(('localhost', 1234)) sock.listen(100) sock.setblocking(False) sel.register(sock, selectors.EVENT_READ, accept)# 一个事件循环,用于IO调度# 当IO可读或者可写的时候, 执行事件所对应的回调函数def loop(): while True: events = sel.select() for key, mask in events: callback = key.data callback(key.fileobj, mask)if __name__ == '__main__': loop()
上面代码中loop函数对应事件循环,它要做的就是一遍一遍的等待IO,然后调用事件的回调函数.
但是作为事件循环远远不够,比如怎么停止,怎么在事件循环中加入其他逻辑.
小结
如果就功能而言,上面的代码似乎已经完成了高并发的影子,但是如你所见,直接使用select的编码难度比较大, 再者回调函数素来有"回调地狱"的恶名.
实际生活中的问题要复杂的多,作为一个调库狂魔,怎么可能会自己去实现这些,所以python官方实现了一个跨平台的事件循环,至于IO模型具体选择,官方会做适配处理。
不过官方实现是在Python3.5及以后了,3.5之前的版本只能使用第三方实现的高并发异步IO解决方案, 比如tornado,gevent,twisted。
至此你需要get到python高并发的必要条件了.
asyncio
在本文开头,笔者就说过,python要完成高并发需要协程,事件循环,高效IO模型.而Python自带的asyncio模块已经全部完成了.尽情使用吧.
下面是有引用官方的一个例子
import asyncio# 通过async声明一个协程async def handle_echo(reader, writer): # 将需要io的函数使用await等待, 那么此函数就会停止 # 当IO操作完成会唤醒这个协程 # 可以将await理解为yield from data = await reader.read(100) message = data.decode() addr = writer.get_extra_info('peername') print("Received %r from %r" % (message, addr)) print("Send: %r" % message) writer.write(data) await writer.drain() print("Close the client socket") writer.close()# 创建事件循环loop = asyncio.get_event_loop()# 通过asyncio.start_server方法创建一个协程coro = asyncio.start_server(handle_echo, '127.0.0.1', 8888, loop=loop) server = loop.run_until_complete(coro)# Serve requests until Ctrl+C is pressedprint('Serving on {}'.format(server.sockets[0].getsockname())) try: loop.run_forever() except KeyboardInterrupt: pass# Close the serverserver.close()loop.run_until_complete(server.wait_closed())loop.close()
总的来说python3.5明确了什么是协程,什么是生成器,虽然原理差不多,但是这样会使得不会让生成器即可以作为生成器使用(比如迭代数据)又可以作为协程。
所以引入了async,await使得协程的语义更加明确。
asyncio生态
asyncio官方只实现了比较底层的协议,比如TCP,UDP。所以诸如HTTP协议之类都需要借助第三方库,比如aiohttp。
虽然异步编程的生态不够同步编程的生态那么强大,但是如果又高并发的需求不妨试试,下面说一下比较成熟的异步库
aiohttp
异步http client/server框架
github地址: https://github.com/aio-libs/aiohttp
sanic
速度更快的类flask web框架。
github地址:
https://github.com/channelcat/sanic
uvloop
快速,内嵌于asyncio事件循环的库,使用cython基于libuv实现。
官方性能测试:
nodejs的两倍,追平golang
github地址: https://github.com/MagicStack/uvloop
为了减少歧义,这里的性能测试应该只是网络IO高并发方面不是说任何方面追平golang。
总结
Python之所以能够处理网络IO高并发,是因为借助了高效的IO模型,能够最大限度的调度IO,然后事件循环使用协程处理IO,协程遇到IO操作就将控制权抛出,那么在IO准备好之前的这段事件,事件循环就可以使用其他的协程处理其他事情,然后协程在用户空间,并且是单线程的,所以不会像多线程,多进程那样频繁的上下文切换,因而能够节省大量的不必要性能损失。
注: 不要再协程里面使用time.sleep之类的同步操作,因为协程再单线程里面,所以会使得整个线程停下来等待,也就没有协程的优势了
本文主要讲解Python为什么能够处理高并发,不是为了讲解某个库怎么使用,所以使用细节请查阅官方文档或者执行。
无论什么编程语言,高性能框架,一般由事件循环 + 高性能IO模型(也许是epoll)组成。
编程语言 python
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。