好烦 总是闪退,修复后是之前的文件!!!崩溃
926
2022-05-29
话不多说,直接上代码
这里 也有更多pyecharts的代码~
示例
调用库
import pandas as pd import time from functools import partial from PyQt5.QtWidgets import * from PyQt5 import QtCore, QtGui, QtWidgets from pyecharts import options as opts from pyecharts.charts import Kline, Line, Bar, Grid import webbrowser as wb
1
2
3
4
5
6
7
8
K线图、输出在默认浏览器显示
# 移动平均数计算 def moving_average(data, day_count): data = data.values[:, 0] result = [] for i in range(len(data)): start_day_index = i - day_count + 1 if start_day_index <= 0: start_day_index = 0 justified_day_count = i - start_day_index + 1 mean = data[start_day_index:i + 1].sum() / justified_day_count result.append(mean) return result # k线 --项目需求:已实现-- def show_kline(csv_name): # 读取.csv文件, stock_code = 'Brent_OIL' stock_data = pd.read_csv(csv_name, encoding='gb2312') # 将文件内容按照by=[‘date’]内容进行排序 stock_data = stock_data.sort_values(by=["date"], ascending=[True], inplace=False) stock_data_cleared = stock_data[stock_data['close'] > 0] stock_name = stock_data_cleared["position"][0] stock_data_extracted = stock_data_cleared[["open", "close", "low", "high", "volume", "date"]] kline = ( Kline() .add_xaxis(stock_data_extracted["date"].values.tolist()) .add_yaxis("K线图", stock_data_extracted.iloc[:, :4].values.tolist()) .set_global_opts( xaxis_opts=opts.AxisOpts(is_scale=True, is_show=False), # axis_opts=opts.AxisOpts(is_scale=True,min_=0), #y轴起始坐标可以设为0 yaxis_opts=opts.AxisOpts(is_scale=True), # y轴起始坐标可自动调整 #title_opts=opts.TitleOpts(title="价格", subtitle=stock_name + "\n" + stock_code, pos_top="20%"), axispointer_opts=opts.AxisPointerOpts( is_show=True, link=[{"xAxisIndex": "all"}], label=opts.LabelOpts(background_color="#777"), ), datazoom_opts=[ # 设置zoom参数后即可缩放 opts.DataZoomOpts( is_show=True, type_="inside", xaxis_index=[0, 1], # 设置第0轴和第1轴同时缩放 range_start=0, range_end=100, ), opts.DataZoomOpts( is_show=True, xaxis_index=[0, 1], type_="slider", pos_top="90%", range_start=0, range_end=100, ), ], ) ) # 移动平均线 line = ( Line() .add_xaxis(xaxis_data=stock_data_extracted["date"].values.tolist()) .add_yaxis( series_name="MA5", y_axis=moving_average(stock_data_extracted[["close"]], 5), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA10", y_axis=moving_average(stock_data_extracted[["close"]], 10), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA30", y_axis=moving_average(stock_data_extracted[["close"]], 30), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA60", y_axis=moving_average(stock_data_extracted[["close"]], 60), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA120", y_axis=moving_average(stock_data_extracted[["close"]], 120), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA240", y_axis=moving_average(stock_data_extracted[["close"]], 240), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="MA360", y_axis=moving_average(stock_data_extracted[["close"]], 360), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=1, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category")) ) # 将K线图和移动平均线显示在一个图内 kline.overlap(line) # 成交量柱形图 x = stock_data_extracted[["date"]].values[:, 0].tolist() y = stock_data_extracted[["volume"]].values[:, 0].tolist() bar = ( Bar() .add_xaxis(x) .add_yaxis("成交量", y, label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color="#008080")) .set_global_opts(title_opts=opts.TitleOpts(title="成交量", pos_top="70%"), legend_opts=opts.LegendOpts(is_show=False), ) ) # 使用网格将多张图标组合到一起显示 grid_chart = Grid() grid_chart.add( kline, grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", height="55%"), ) grid_chart.add( bar, grid_opts=opts.GridOpts(pos_left="15%", pos_right="8%", pos_top="70%", height="20%"), ) htl = csv_name + ".html" grid_chart.render(htl) wb.open(htl)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
主函数
def click_success(self): print("数据获取成功!") csv_name1 = 'outside_brent_oil.csv' outside_history_brent_oil_data().to_csv(csv_name1, index=False) show_kline(csv_name1) # html_success() def click_success_3(self): print("数据获取成功!") csv_name2 = 'outside_newyork_oil.csv' outside_history_newyork_oil_data().to_csv(csv_name2, index=False) show_kline(csv_name2) def click_success_4(self): print("数据获取成功!") csv_name3 = 'outside_newyork_gas.csv' outside_history_newyork_natural_gas_data().to_csv(csv_name3, index=False) show_kline(csv_name3) if __name__ == '__main__': app = QApplication(sys.argv) MainWindow = QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() # 外盘期货 ui.pushButton.clicked.connect(click_success) # 布伦特原油期货分析图 ui.pushButton_3.clicked.connect(click_success_3) # 纽约原油期货分析图 ui.pushButton_4.clicked.connect(click_success_4) # 纽约天然气期货分析图 sys.exit(app.exec_())
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
其中实现跳转代码为
htl = csv_name + ".html" grid_chart.render(htl) wb.open(htl)
1
2
3
4
"
所以不用老去纠结每件事
集中精力完成眼前的事情的过程中
愿望自然就会实现了吧。
"
【纯·干货】你会用到的论文小助手,不定期持续更新中~
HTML Python
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。