哪些数据分析的方法(进行数据分析的方法有哪些)

网友投稿 929 2022-06-19

要做好资料分析工作,要有一定的数学基础,如基本统计量的概念、离散度与可变性的度量指标、通过对相关指标和概念的应用,概率理论、统计抽样、置信期和假设检验等数据分布,使数据分析结果更加专业。下面就让来给大家分享一下有哪些数据分析的方法,让我们一起来看看吧。

1.对比分析法

对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。

横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。

有哪些数据分析的方法(进行数据分析的方法有哪些)

纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。

利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。

2.分组分析法

分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。

所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。

3.预测分析法

预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。

4.漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。

使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。

5.AB测试分析法

AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

数据分析的目的是将一大堆看起来混乱的资料集中起来,并从中提炼,以找到被研究对象的内在规律。实际上,通过数据分析 ,人们可以作出判断,从而采取合适的行动。以上就是为大家分享的关于“有哪些数据分析的方法”的全部内容啦,希望能够给大家带来帮助哦。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Word2019文档中新建样式的方法(word2019新建段落样式)
下一篇:常见的数据分析法有哪些(常用的8种数据分析方法)
相关文章