用Python爬取豆瓣电影TOP250分析

网友投稿 1268 2022-05-29

/ 01 / Scrapy

之前了解了pyspider框架的使用,但是就它而言,只能应用于一些简单的爬取。

对于反爬程度高的网站,它就显得力不从心。

那么就轮到Scrapy上场了,目前Python中使用最广泛的爬虫框架。

当然目前我学习的都是简单爬虫,上述内容都是道听途说,并不是切身体会。

Scrapy的安装相对复杂,依赖的库较多。

不过通过度娘,最后我是成功安装了的。放在C盘,如今我的C盘要爆炸。

首先任意文件夹下命令行运行scrapy startproject doubanTop250,创建一个名为doubanTop250的文件夹。

然后在文件夹下的py文件中改写程序。

进入文件夹里,命令行运行scrapy genspider douban movie.douban.com/top250。

最后会生成一个douban.py文件,Scrapy用它来从网页里抓取内容,并解析抓取结果。

最终修改程序如下。

import scrapy

from scrapy import Spider

from doubanTop250.items import Doubantop250Item

class DoubanSpider(scrapy.Spider):

name = 'douban'

allowed_domains = ['douban.com']

start_urls = ['https://movie.douban.com/top250/']

def parse(self, response):

lis = response.css('.info')

for li in lis:

item = Doubantop250Item()

# 利用CSS选择器获取信息

name = li.css('.hd span::text').extract()

title = ''.join(name)

info = li.css('p::text').extract()[1].replace('\n', '').strip()

score = li.css('.rating_num::text').extract_first()

people = li.css('.star span::text').extract()[1]

words = li.css('.inq::text').extract_first()

# 生成字典

item['title'] = title

item['info'] = info

item['score'] = score

item['people'] = people

item['words'] = words

yield item

# 获取下一页链接,并进入下一页

next = response.css('.next a::attr(href)').extract_first()

if next:

url = response.urljoin(next)

用Python爬取豆瓣电影TOP250分析

yield scrapy.Request(url=url, callback=self.parse)

pass

生成的items.py文件,是保存爬取数据的容器,代码修改如下。

import scrapy

class Doubantop250Item(scrapy.Item):

# define the fields for your item here like:

# name = scrapy.Field()

title = scrapy.Field()

info = scrapy.Field()

score = scrapy.Field()

people = scrapy.Field()

words = scrapy.Field()

pass

在这个之后,还需要在settings.py文件添加用户代理和请求延时。

最后在douban.py所在文件夹下打开命令行,输入scrapy crawl douban。

命令行就会显示获取的结果啦!!!

这里豆瓣的信息有Unicode编码,我也不知为何要在一个网页里设置两种编码。

在当前文件夹命令行运行scrapy crawl douban -o douban.csv,即可输出csv文件。

由于在处理的时候没有去除空格,造成有两种编码存在,无法通过Excel查看。

这里就贴一个文本文档,后续会在数据可视化里去除Unicode编码。

/ 02 / 数据可视化

01 电影上映年份分布

这里可以看出豆瓣电影TOP250里,电影的上映年份,多分布于80年代以后。

其中有好几年是在10部及以上的。

02 中外电影上映年份分布

明显感受到了国产电影和国外电影的差距,90年代还行,还能过过招。

越往后,国产电影就基本就没有上榜的。

每年电影出得倒是不少,真正质量好的又能有几部呢?

今天刚好看到新周刊的推文「2018年10大烂片」。

影评人周黎明:如果一部影片既没有表达,也没有最基本的技术水准,那应该是最彻底的烂片。

讲道理,国产烂片还真不少...

03 中外电影评分情况

通过上张图,我们知道国外电影是占据了榜单的大多数。

不过这里评分情况,倒是倍感欣慰,说明国产电影中的精品也不错,和国外电影并没有太大的差距。

只是这些影片貌似有点老了...

04 电影数TOP10

美国遥遥领先,中国位居其中。

在我的那篇「2018年电影分析」中,中国目前可是个电影高产国,结果呢...

香港都比内地的多。这里不得不佩服90,00年代的香港影业,确实很强!

05 电影评分分布

大多分布于「8.5」到「9.2」之间。最低「8.3」,最高「9.6」。

06 评论人数TOP10

让我们来看看人气最高的有哪些影片,你又看过几部呢?

记得上学的时候,时间多。我根据IMDbTOP250,看了榜上大部分的电影。

于是乎豆瓣电影这个TOP10,我也全看过了,都是一些有故事的电影。

07 排名评分人数三维度

总的来说,排名越靠前,评价人数越多,并且分数也越高。

08 年份评分人数三维度

这里就更加明显看出榜单上电影分布情况,大部分都是80年代以后的。

在90年代有个小高峰,不仅评价高,人气还高。

往后的数据就相对平稳,变化不是太大。

09 电影类型图

和我之前「2018年电影分析」比较一下,发现榜单里「动作」片减少不少,其他差别不大。

这算不算是间接说明国人更喜欢视觉上的东西呢?

/ 03 / 总结

本次只是一个简单的Scrapy操作,目的就是简单了解一下它的使用。

以后或许会更深入去学习Scrapy框架,所以慢慢等小F填坑吧!

本文转载自微信公众号【java学习之道】。

爬虫 python

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:《AI安全之对抗样本入门》—2 打造对抗样本工具箱
下一篇:异步、多线程、任务、并行编程之一:选择合适的多线程模型
相关文章