市场研究有哪些技术呢(市场调研技术有哪些)
611
2022-05-28
RocksDBStateBackend.png
RocksDB 是一个 key/value 的内存存储系统,和其他的 key/value 一样,先将状态放到内存中,如果内存快满时,则写入到磁盘中,
但需要注意 RocksDB 不支持同步的 Checkpoint,构造方法中没有同步快照这个选项。
不过 RocksDB 支持增量的 Checkpoint,意味着并不需要把所有 sst 文件上传到 Checkpoint 目录,仅需要上传新生成的 sst 文件即可。它的 Checkpoint 存储在外部文件系统(本地或HDFS),
image.png
状态信息存储在 RocksDB 数据库 (key-value 的数据存储服务), 最终保存在本地文件中
checkpoint 的时候将状态保存到指定的文件中 (HDFS 等文件系统)
缺点: 状态访问速度有所下降 优点: 可以存储超大量的状态信息 状态信息不会丢失 用于: 生产,可以存储超大量的状态信息
StateBackend配置方式
(1)单任务调整 修改当前任务代码 env.setStateBackend(new FsStateBackend("hdfs://namenode:9000/flink/checkpoints")); 或者new MemoryStateBackend() 或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】
如果使用RocksDBStateBackend方式,需要在pom.xml文件中,添加如下依赖
(2)全局调整(不建议)
修改flink-conf.yaml state.backend: filesystem state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints 注意:state.backend的值可以是下面几种:jobmanager(MemoryStateBackend), filesystem(FsStateBackend), rocksdb(RocksDBStateBackend)
Maven
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。