Python常用的序列化工具对比,看哪个性能最好

网友投稿 854 2022-05-28

json、pickle、shelve是Python提供给我们的序列化工具,小编利用休息时间学习python教程为大家整理的对比Python里面常用的序列化工具(json\pickle\marshal)看哪个性能更强大一些呢?请看下面这篇文章的介绍。

闲扯

磁盘上的数据,我们一般称为 “文件” ,一般不同的文件都有各自的后缀名,比如 .txt .docx .xlsx .jpg .mp3 .avi 。这些不同类型的文件一般分为两大类:

文本文件: 用记事本打开看到的是英文、发文、中文等字符;

二进制文件: 用记事本打开看到的可能就是一堆乱码;

平日里,大家接触到的更多的是二进制文件,比如word文档,图片,视频,音频等。为了保存和读取这些不同文件,各自都规定了各自的文件格式,这些格式是各自存储的规范。同时为了让保存的文件更小便于传输(比如,视频通过网络传输),各自还通过一些算法对文件数据进行压缩,尤其是图片、视频和音频都各自有很多压缩算法,比如图片的jpg,音频的mp3,视频的mkv这些即代表了相应的文件格式,还代表了其背后的压缩算法。这些多媒体数据的压缩算法的原则是,在保证媒体质量的前提下尽量使得数据存储量小。

除了文件本身的一些压缩算法,我们还经常使用一些通用的压缩软件对文件进行打包和压缩,比如zip,WinRAR等。

Python序列化

Python常用的序列化工具对比,看哪个性能最好

我们使用python时,经常用到的数据就是int,float,string,list, dict,tuple这些内置的数据类型和结构。写程序时,我们很可能希望把这些基本数据存储到硬盘,即保存存储结果。这个过程,我们称之为“序列化”

Python里面常用的序列化工具有:

json

pickle

marshal

cPickle是pickle的C语言实现,速度更快,但Python3里面的pickle就是C语言实现的,因此不再包含cPickle模块。

json在web中使用更为广泛,是各种web API的首选数据格式。

以上三种工具,哪一个更快呢?

#!/usr/bin/env pythonimport timeimport jsonimport pickleimport marshaldef test(data, method):     if method == 'json':         dumps = json.dumps         loads = json.loads     elif method == 'pickle':         dumps = pickle.dumps         loads = pickle.loads     elif method == 'marshal':         dumps = marshal.dumps         loads = marshal.loads     b = time.time()     s = ''     loop = 10000                                                                                                                                                                                                  for i in range(loop):         s = dumps(data)     print('{} dumps time cost: {}'.format(method, time.time() - b))      b = time.time()     for i in range(loop):         loads(s)     print('{} loads time cost: {}'.format(method, time.time() - b))  def main():     # generate test data     data = {}     count = 80     for i in range(10000):         k = '%05d' % (i % count)         if k in data:             data[k].append(i / count)         else:             data[k] = [i/count]     print('data:', len(data))     # test     test(data, 'json')     test(data, 'pickle')     test(data, 'marshal')if __name__ == '__main__':     main()

以上代码的测试过程是,对一个有80个key的字典进行序列化和反序列化操作,每个模块各循环10000次,统计各自的耗时。用Python3.6跑出的结果如下:

json dumps time cost: 30.436348915100098 json loads time cost: 10.900368928909302 pickle dumps time cost: 1.7617356777191162 pickle loads time cost: 2.8096134662628174 marshal dumps time cost: 1.8232548236846924 marshal loads time cost: 1.991441011428833

由此看出,pickle的性能最好,json最慢。

猿人学Python是一个不错的学习网站,感兴趣的可以关注公众号或是网站

python

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【华为云学院·微认证】《一分钟自动化部署》 助您业务轻松上云。这一分钟学会,下一分钟兑现价值!
下一篇:Linux——(2)文件系统、系统操作、文本操作命令、文件压缩与打包
相关文章