数据结构的定义是什么(数据结构指的是什么)
776
2022-05-30
1. 结构指针变量作函数参数
在ANSI C标准中允许用结构变量作函数参数进行整体传送。 但是这种传送要将全部成员逐个传送, 特别是成员为数组时将会使传送的时间和空间开销很大,严重地降低了程序的效率。 因此最好的办法就是使用指针,即用指针变量作函数参数进行传送。 这时由实参传向形参的只是地址,从而减少了时间和空间的开销。
[计算一组学生的平均成绩和不及格人数。]
用结构指针变量作函数参数编程。
struct stu { int num; char *name; char sex; float score;}boy[5]={ {101,"Li ping",'M',45}, {102,"Zhang ping",'M',62.5}, {103,"He fang",'F',92.5}, {104,"Cheng ling",'F',87}, {105,"Wang ming",'M',58}, }; main() { struct stu *ps; void ave(struct stu *ps); ps=boy; ave(ps); } void ave(struct stu *ps) { int c=0,i; float ave,s=0; for(i=0;i<5;i++,ps++) { s+=ps->score; if(ps->score<60) c+=1; } printf("s=%f\n",s); ave=s/5; printf("average=%f\ncount=%d\n",ave,c); }
本程序中定义了函数ave,其形参为结构指针变量ps。boy 被定义为外部结构数组,因此在整个源程序中有效。在main 函数中定义说明了结构指针变量ps,并把boy的首地址赋予它,使ps指向boy 数组。然后以ps作实参调用函数ave。在函数ave 中完成计算平均成绩和统计不及格人数的工作并输出结果。与例7.4程序相比,由于本程序全部采用指针变量作运算和处理,故速度更快,程序效率更高。.
2. 动态存储分配–链表
在数组一章中,曾介绍过数组的长度是预先定义好的, 在整个程序中固定不变。C语言中不允许动态数组类型。例如: int n;scanf("%d",&n);int a[n]; 用变量表示长度,想对数组的大小作动态说明, 这是错误的。但是在实际的编程中,往往会发生这种情况, 即所需的内存空间取决于实际输入的数据,而无法预先确定。对于这种问题, 用数组的办法很难解决。为了解决上述问题,C语言提供了一些内存管理函数,这些内存管理函数可以按需要动态地分配内存空间, 也可把不再使用的空间回收待用,为有效地利用内存资源提供了手段。 常用的内存管理函数有以下三个:
2.1 分配内存空间函数malloc
调用形式: (类型说明符*) malloc (size) 功能:在内存的动态存储区中分配一块长度为"size" 字节的连续区域。函数的返回值为该区域的首地址。 “类型说明符”表示把该区域用于何种数据类型。(类型说明符*)表示把返回值强制转换为该类型指针。“size”是一个无符号数。例如: pc=(char *) malloc (100); 表示分配100个字节的内存空间,并强制转换为字符数组类型, 函数的返回值为指向该字符数组的指针, 把该指针赋予指针变量pc。
2.2 分配内存空间函数 calloc
calloc 也用于分配内存空间。
调用形式: (类型说明符*)calloc(n,size)
功能:在内存动态存储区中分配n块长度为“size”字节的连续区域。函数的返回值为该区域的首地址。(类型说明符*)用于强制类型转换。
calloc函数与malloc 函数的区别仅在于一次可以分配n块区域。
例如: ps=(struet stu*) calloc(2,sizeof (struct stu)); 其中的sizeof(struct stu)是求stu的结构长度。因此该语句的意思是:按stu的长度分配2块连续区域,强制转换为stu类型,并把其首地址赋予指针变量ps。
2.3 释放内存空间函数free
调用形式: free(void*ptr);
功能:释放ptr所指向的一块内存空间,ptr 是一个任意类型的指针变量,它指向被释放区域的首地址。被释放区应是由malloc或calloc函数所分配的区域。
3. 链表
3.1 分配一块区域,输入一个学生数据。
main() { struct stu { int num; char *name; char sex; float score; } *ps; ps=(struct stu*)malloc(sizeof(struct stu)); ps->num=102; ps->name="Zhang ping"; ps->sex='M'; ps->score=62.5; printf("Number=%d\nName=%s\n",ps->num,ps->name); printf("Sex=%c\nScore=%f\n",ps->sex,ps->score); free(ps); }
本例中,定义了结构stu,定义了stu类型指针变量ps。 然后分配一块stu大内存区,并把首地址赋予ps,使ps指向该区域。再以ps为指向结构的指针变量对各成员赋值,并用printf 输出各成员值。最后用free函数释放ps指向的内存空间。 整个程序包含了申请内存空间、使用内存空间、释放内存空间三个步骤, 实现存储空间的动态分配。链表的概念在例7.9中采用了动态分配的办法为一个结构分配内存空间。每一次分配一块空间可用来存放一个学生的数据, 我们可称之为一个结点。有多少个学生就应该申请分配多少块内存空间, 也就是说要建立多少个结点。当然用结构数组也可以完成上述工作, 但如果预先不能准确把握学生人数,也就无法确定数组大小。 而且当学生留级、退学之后也不能把该元素占用的空间从数组中释放出来。 用动态存储的方法可以很好地解决这些问题。 有一个学生就分配一个结点,无须预先确定学生的准确人数,某学生退学, 可删去该结点,并释放该结点占用的存储空间。从而节约了宝贵的内存资源。 另一方面,用数组的方法必须占用一块连续的内存区域。 而使用动态分配时,每个结点之间可以是不连续的(结点内是连续的)。 结点之间的联系可以用指针实现。 即在结点结构中定义一个成员项用来存放下一结点的首地址,这个用于存放地址的成员,常把它称为指针域。可在第一个结点的指针域内存入第二个结点的首地址, 在第二个结点的指针域内又存放第三个结点的首地址, 如此串连下去直到最后一个结点。最后一个结点因无后续结点连接,其指针域可赋为0。
这样一种连接方式,在数据结构中称为“链表”。
第0个结点称为头结点, 它存放有第一个结点的首地址,它没有数据,只是一个指针变量。 以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号num,姓名name,性别sex和成绩score等。另一个域为指针域, 存放下一结点的首地址。链表中的每一个结点都是同一种结构类型。
例如, 一个存放学生学号和成绩的结点应为以下结构:
struct stu { int num; int score; struct stu *next; }
前两个成员项组成数据域,后一个成员项next构成指针域, 它是一个指向stu类型结构的指针变量。
3.3 链表的基本操作
链表的基本操作对链表的主要操作有以下几种:
1.建立链表; 2.结构的查找与输出; 3.插入一个结点; 4.删除一个结点;
下面通过例题来说明这些操作。
建立一个三个结点的链表,存放学生数据。 为简单起见, 我们假定学生数据结构中只有学号和年龄两项。
3.4 可编写一个建立链表的函数creat
程序如下:
#define NULL 0 #define TYPE struct stu #define LEN sizeof (struct stu) struct stu { int num; int age; struct stu *next; }; TYPE *creat(int n) { struct stu *head,*pf,*pb; int i; for(i=0;i
在函数外首先用宏定义对三个符号常量作了定义。这里用TYPE表示struct stu,用LEN表示sizeof(struct stu)主要的目的是为了在以下程序内减少书写并使阅读更加方便。结构stu定义为外部类型,程序中的各个函数均可使用该定义。
creat函数用于建立一个有n个结点的链表,它是一个指针函数,它返回的指针指向stu结构。在creat函数内定义了三个stu结构的指针变量。head为头指针,pf 为指向两相邻结点的前一结点的指针变量。pb为后一结点的指针变量。在for语句内,用malloc函数建立长度与stu长度相等的空间作为一结点,首地址赋予pb。然后输入结点数据。如果当前结点为第一结点(i==0),则把pb值 (该结点指针)赋予head和pf。如非第一结点,则把pb值赋予pf 所指结点的指针域成员next。而pb所指结点为当前的最后结点,其指针域赋NULL。 再把pb值赋予pf以作下一次循环准备。
creat函数的形参n,表示所建链表的结点数,作为for语句的循环次数。
写一个函数,在链表中按学号查找该结点。
TYPE * search (TYPE *head,int n) { TYPE *p; int i; p=head; while (p->num!=n && p->next!=NULL) p=p->next; /* 不是要找的结点后移一步*/ if (p->num==n) return (p); if (p->num!=n&& p->next==NULL) printf ("Node %d has not been found!\n",n }
本函数中使用的符号常量TYPE与例7.10的宏定义相同,等于struct stu。函数有两个形参,head是指向链表的指针变量,n为要查找的学号。进入while语句,逐个检查结点的num成员是否等于n,如果不等于n且指针域不等于NULL(不是最后结点)则后移一个结点,继续循环。如找到该结点则返回结点指针。 如循环结束仍未找到该结点则输出“未找到”的提示信息。
3.5 删除链表中的指定结点
写一个函数,删除链表中的指定结点。删除一个结点有两种情况:
被删除结点是第一个结点。这种情况只需使head指向第二个结点即可。即head=pb->next。
被删结点不是第一个结点,这种情况使被删结点的前一结点指向被删结点的后一结点即可。即pf->next=pb->next。
函数编程如下:
TYPE * delete(TYPE * head,int num) { TYPE *pf,*pb; if(head==NULL) /*如为空表, 输出提示信息*/ { printf("\nempty list!\n"); goto end;} pb=head; while (pb->num!=num && pb->next!=NULL) /*当不是要删除的结点,而且也不是最后一个结点时,继续循环*/ {pf=pb;pb=pb->next;}/*pf指向当前结点,pb指向下一结点*/ if(pb->num==num) {if(pb==head) head=pb->next; /*如找到被删结点,且为第一结点,则使head指向第二个结点, 否则使pf所指结点的指针指向下一结点*/ else pf->next=pb->next; free(pb); printf("The node is deleted\n");} else printf("The node not been foud!\n"); end: return head; }
函数有两个形参,head为指向链表第一结点的指针变量,num删结点的学号。 首先判断链表是否为空,为空则不可能有被删结点。若不为空,则使pb指针指向链表的第一个结点。进入while语句后逐个查找被删结点。找到被删结点之后再看是否为第一结点,若是则使head指向第二结点(即把第一结点从链中删去),否则使被删结点的前一结点(pf所指)指向被删结点的后一结点(被删结点的指针域所指)。如若循环结束未找到要删的结点, 则输出“末找到”的提示信息。最后返回head值。
3.6 在链表中指定位置插入一个结点
写一个函数,在链表中指定位置插入一个结点。在一个链表的指定位置插入结点, 要求链表本身必须是已按某种规律排好序的。例如,在学生数据链表中, 要求学号顺序插入一个结点。设被插结点的指针为pi。 可在三种不同情况下插入。
原表是空表,只需使head指向被插结点即可。
被插结点值最小,应插入第一结点之前。这种情况下使head指向被插结点,被插结点的指针域指向原来的第一结点则可。即:pi->next=pb;head=pi;
在其它位置插入,这种情况下,使插入位置的前一结点的指针域指向被插结点,使被插结点的指针域指向插入位置的后一结点。即为:pi->next=pb;pf->next=pi;
在表末插入。这种情况下使原表末结点指针域指向被插结点,被插结点指针域置为NULL。即:
pb->next=pi; pi->next=NULL; TYPE * insert(TYPE * head,TYPE *pi) { TYPE *pf,*pb; pb=head; if(head==NULL) /*空表插入*/ (head=pi; pi->next=NULL;} else { while((pi->num>pb->num)&&(pb->next!=NULL)) {pf=pb; pb=pb->next; }/*找插入位置*/ if(pi->num<=pb->num) {if(head==pb)head=pi;/*在第一结点之前插入*/ else pf->next=pi;/*在其它位置插入*/ pi->next=pb; } else {pb->next=pi; pi->next=NULL;} /*在表末插入*/ } return head;}
本函数有两个形参均为指针变量,head指向链表,pi 指向被插结点。函数中首先判断链表是否为空,为空则使head指向被插结点。表若不空,则用while语句循环查找插入位置。找到之后再判断是否在第一结点之前插入,若是则使head 指向被插结点被插结点指针域指向原第一结点,否则在其它位置插入, 若插入的结点大于表中所有结点,则在表末插入。本函数返回一个指针, 是链表的头指针。 当插入的位置在第一个结点之前时, 插入的新结点成为链表的第一个结点,因此head的值也有了改变, 故需要把这个指针返回主调函数。
将以上建立链表,删除结点,插入结点的函数组织在一起,再建一个输出全部结点的函数,然后用main函数调用它们。
本例中,print函数用于输出链表中各个结点数据域值。函数的形参head的初值指向链表第一个结点。在while语句中,输出结点值后,head值被改变,指向下一结点。若保留头指针head, 则应另设一个指针变量,把head值赋予它,再用它来替代head。在main函数中,n为建立结点的数目, num为待删结点的数据域值;head为指向链表的头指针,pnum为指向待插结点的指针。
main函数中各行的意义是:
第六行输入所建链表的结点数; 第七行调creat函数建立链表并把头指针返回给head; 第八行调print函数输出链表; 第十行输入待删结点的学号; 第十一行调delete函数删除一个结点; 第十二行调print函数输出链表; 第十四行调malloc函数分配一个结点的内存空间, 并把其地址赋予pnum; 第十五行输入待插入结点的数据域值; 第十六行调insert函数插入pnum所指的结点; 第十七行再次调print函数输出链表。
#define NULL 0 #define TYPE struct stu #define LEN sizeof(struct stu) struct stu { int num; int age; struct stu *next; }; TYPE * creat(int n) { struct stu *head,*pf,*pb; int i; for(i=0;i
从运行结果看,首先建立起3个结点的链表,并输出其值;再删103号结点,只剩下105,108号结点;又输入106号结点数据, 插入后链表中的结点为105,106,108。联合“联合”也是一种构造类型的数据结构。 在一个“联合”内可以定义多种不同的数据类型, 一个被说明为该“联合”类型的变量中,允许装入该“联合”所定义的任何一种数据。 这在前面的各种数据类型中都是办不到的。例如, 定义为整型的变量只能装入整型数据,定义为实型的变量只能赋予实型数据。
在实际问题中有很多这样的例子。 例如在学校的教师和学生中填写以下表格: 姓 名 年 龄 职 业 单位 “职业”一项可分为“教师”和“学生”两类。 对“单位”一项学生应填入班级编号,教师应填入某系某教研室。 班级可用整型量表示,教研室只能用字符类型。 要求把这两种类型不同的数据都填入“单位”这个变量中, 就必须把“单位”定义为包含整型和字符型数组这两种类型的“联合”。
“联合”与“结构”有一些相似之处。但两者有本质上的不同。在结构中各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量的长度等于各成员中最长的长度。应该说明的是, 这里所谓的共享不是指把多个成员同时装入一个联合变量内, 而是指该联合变量可被赋予任一成员值,但每次只能赋一种值, 赋入新值则冲去旧值。如前面介绍的“单位”变量, 如定义为一个可装入“班级”或“教研室”的联合后,就允许赋予整型值(班级)或字符串(教研室)。要么赋予整型值,要么赋予字符串,不能把两者同时赋予它。联合类型的定义和联合变量的说明一个联合类型必须经过定义之后, 才能把变量说明为该联合类型。
4. 联合体-共用体的定义
定义一个联合类型的一般形式为:
union 联合名 { 成员表 };
成员表中含有若干成员,成员的一般形式为: 类型说明符 成员名 成员名的命名应符合标识符的规定。
例如:
union perdata { int class; char office[10]; };
定义了一个名为perdata的联合类型,它含有两个成员,一个为整型,成员名为class;另一个为字符数组,数组名为office。联合定义之后,即可进行联合变量说明,被说明为perdata类型的变量,可以存放整型量class或存放字符数组office。
5. 联合体-共用体变量的说明
联合变量的说明和结构变量的说明方式相同, 也有三种形式。即先定义,再说明;定义同时说明和直接说明。以perdata类型为例,说明如下:
union perdata { int class; char officae[10]; }; union perdata a,b; /*说明a,b为perdata类型*/
或者可同时说明为:
union perdata { int class; char office[10]; }a,b;或直接说明为: union { int class; char office[10]; }a,b
经说明后的a,b变量均为perdata类型。a,b变量的长度应等于 perdata 的成员中最长的长度, 即等于
office数组的长度,共10个字节。从图中可见,a,b变量如赋予整型值时,只使用了2个字节,而赋予字符数组时,可用10个字节。
6. 联合变量的赋值和使用
对联合变量的赋值,使用都只能是对变量的成员进行。 联合变量的成员表示为: 联合变量名.成员名 例如,a被说明为perdata类型的变量之后,可使用 a.class a.office 不允许只用联合变量名作赋值或其它操作。 也不允许对联合变量作初始化赋值,赋值只能在程序中进行。还要再强调说明的是,一个联合变量, 每次只能赋予一个成员值。换句话说,一个联合变量的值就是联合变员的某一个成员值。
设有一个教师与学生通用的表格,教师数据有姓名,年龄,职业,教研室四项。学生有姓名,年龄,职业,班级四项。
编程输入人员数据, 再以表格输出。
main() { struct { char name[10]; int age; char job; union { int class; char office[10]; } depa; }body[2]; int n,i; for(i=0;i<2;i++) { printf("input name,age,job and department\n"); scanf("%s %d %c",body[i].name,&body[i].age,&body[i].job); if(body[i].job=='s') scanf("%d",&body[i].depa.class); else scanf("%s",body[i].depa.office); } printf("name\tage job class/office\n"); for(i=0;i<2;i++) { if(body[i].job=='s') printf("%s\t%3d %3c %d\n",body[i].name,body[i].age ,body[i].job,body[i].depa.class); else printf("%s\t%3d %3c %s\n",body[i].name,body[i].age, body[i].job,body[i].depa.office); } }
本例程序用一个结构数组body来存放人员数据, 该结构共有四个成员。其中成员项depa是一个联合类型, 这个联合又由两个成员组成,一个为整型量class,一个为字符数组office。在程序的第一个for语句中,输入人员的各项数据,先输入结构的前三个成员name,age和job,然后判别job成员项,如为"s"则对联合depa·class输入(对学生赋班级编号)否则对depa·office输入(对教师赋教研组名)。
在用scanf语句输入时要注意,凡为数组类型的成员,无论是结构成员还是联合成员,在该项前不能再加"&“运算符。如程序第18行中body[i].name是一个数组类型,第22行中的body[i].depa.office也是数组类型,因此在这两项之间不能加”&"运算符。程序中的第二个for语句用于输出各成员项的值:
7. 本章小结
结构和联合是两种构造类型数据,是用户定义新数据类型的重要手段。结构和联合有很多的相似之处,它们都由成员组成。成员可以具有不同的数据类型。成员的表示方法相同。都可用三种方式作变量说明。
在结构中,各成员都占有自己的内存空间,它们是同时存在的。一个结构变量的总长度等于所有成员长度之和。在联合中,所有成员不能同时占用它的内存空间,它们不能同时存在。联合变量的长度等于最长的成员的长度。
“.”是成员运算符,可用它表示成员项,成员还可用“->”运算符来表示。
结构变量可以作为函数参数,函数也可返回指向结构的指针变量。而联合变量不能作为函数参数,函数也不能返回指向联合的指针变量。但可以使用指向联合变量的指针,也可使用联合数组。
结构定义允许嵌套,结构中也可用联合作为成员,形成结构和联合的嵌套。
链表是一种重要的数据结构,它便于实现动态的存储分配。本章介绍是单向链表,还可组成双向链表,循环链表等。
C 语言 数据结构
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。