自动根据数据生成降雨量实况Word报告

网友投稿 523 2022-05-30

最近遇到一个有点烧脑的需求,其实也不算烧脑,主要是判断条件过多,对于我这种记忆力差,内存小的人来说容易出现内存溢出导致大脑宕机。也可能是因为我还没有找到能减小大脑内存压力的写法。

若读者有啥更好解决方案,欢迎评论噢!

先看看需求吧:

主要就是要根据左侧的表格自动生成右侧的word统计报告,实际的各种可能性情况远比图中展示的要更加复杂。

好了,直接开始干代码吧:

数据读取

import pandas as pd df = pd.read_csv("11月份数据.csv", encoding='gbk') # 当前统计月份 month = 11 df = df.query('月份==@month') df

1

2

3

4

5

6

7

数据:

异常数据过滤

查看缺失值数量:

pd.isnull(df).sum()

1

结果:

区域 0 月份 0 降雨量(mm) 0 降雨距平(mm) 1 观测站 0 dtype: int64

1

2

3

4

5

6

仅一个缺失值数据,可直接删除:

df.dropna(inplace=True)

1

计算所有观测站降雨量相对往年的比较

计算降雨量比往年高,跟往年比无变化,以及比往年低的次数分别是多少:

rainfall_high = df.eval('`降雨距平(mm)` > 0').value_counts().get(True, 0) rainfall_equal = df.eval('`降雨距平(mm)` == 0').value_counts().get(True, 0) rainfall_low = df.eval('`降雨距平(mm)` < 0').value_counts().get(True, 0) print(rainfall_high, rainfall_equal, rainfall_low)

1

2

3

4

13 1 18

1

上面的结果中rainfall_high表示降雨量比往年平均水平高的次数,rainfall_equal表示降雨量比往年平均水平持平的次数,rainfall_low表示降雨量比往年平均水平低的次数。

于是分情况讨论生成第一段的报告:

p1 = f"{month}月份" if rainfall_low == 0 or rainfall_high == 0: if rainfall_equal != 0: p1 += f"除{rainfall_equal}个观测站降雨量较往年无变化外," if rainfall_high == 0: p1 += f"各气象观测站降雨量较往年均偏低。" elif rainfall_low == 0: p1 += f"各气象观测站降雨量较往年均偏高。" else: # 10%以内差异认为是持平 if rainfall_high > rainfall_low*1.1: p1 += f"大部分气象观测站降雨量较往年偏高。" elif rainfall_low > rainfall_high*1.1: p1 += f"大部分气象观测站降雨量较往年偏低。" else: p1 += f"各气象观测站降雨量较往年整体持平。" p1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

结果:

'11月份大部分气象观测站降雨量较往年偏低。'

1

计算各区域降雨量的极值

再生成第二段的报告:

p2 = "" t = df['降雨量(mm)'] p2 += f"各区域降雨量在{t.min()}~{t.max()}mm之间,其中{df.loc[t.argmax(), '区域']}区域的降雨量最大,为{t.max()}mm。" p2

1

2

3

4

结果:

'各区域降雨量在0.0~16.0mm之间,其中51a45区域的降雨量最大,为16.0mm。'

1

分观测站统计

让我脑袋疼的地方就是从这里的代码开始的,后面还有更复杂蛋疼的需求就不公布了。

对每个观测站分别统计哪些区域偏高,哪些区域持平,哪些区域偏低:

p3s = [] for station, tmp in df.groupby('观测站'): t = tmp['降雨量(mm)'] p3 = f"各区域降雨量在{t.min()}~{t.max()}mm之间," rainfall_high_mask = tmp.eval('`降雨距平(mm)` > 0') rainfall_equal_mask = tmp.eval('`降雨距平(mm)` == 0') rainfall_low_mask = tmp.eval('`降雨距平(mm)` < 0') rainfall_high = rainfall_high_mask.value_counts().get(True, 0) rainfall_equal = rainfall_equal_mask.value_counts().get(True, 0) rainfall_low = rainfall_low_mask.value_counts().get(True, 0) # print(rainfall_high, rainfall_equal, rainfall_low) if rainfall_low == 0 or rainfall_high == 0: if rainfall_equal != 0: p3 += '除' p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域') p3 += "降雨量较往年无变化外," if rainfall_high == 0: p3 += f"各区域降雨量均较往年偏低" elif rainfall_low == 0: p3 += f"各区域降雨量均较往年偏高" t = tmp['降雨距平(mm)'].abs() p3 += f"{t.min()}~{t.max()}mm;" else: if rainfall_equal != 0: p3 += '除' p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域') p3 += "降雨量较往年无变化," # 10%以内差异认为是持平 if rainfall_high > rainfall_low*1.1: if rainfall_equal == 0: p3 += '除' p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域') p3 += "降雨量较往年偏低" t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs() if t.shape[0] > 1: p3 += f"{t.min()}~{t.max()}mm" else: p3 += f"{t.min()}mm" p3 += "外," t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs() p3 += f"其余各区域降雨量较往年偏高{t.min()}~{t.max()}mm;" elif rainfall_low > rainfall_high*1.1: if rainfall_equal == 0: p3 += '除' p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域') p3 += "降雨量较往年偏高" t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs() if t.shape[0] > 1: p3 += f"{t.min()}~{t.max()}mm" else: p3 += f"{t.min()}mm" p3 += "外," t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs() p3 += f"其余各区域降雨量较往年偏低{t.min()}~{t.max()}mm;" else: if rainfall_equal != 0: p3 = p3[:-1]+'外,' p3 += f"各区域降雨量较往年偏高和偏低的数量持平,其中" p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域') p3 += "降雨量较往年偏低" t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs() if t.shape[0] > 1: p3 += f"{t.min()}~{t.max()}mm," else: p3 += f"{t.min()}mm," p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域') p3 += "降雨量较往年偏高" t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs() if t.shape[0] > 1: p3 += f"{t.min()}~{t.max()}mm;" else: p3 += f"{t.min()}mm;" p3s.append([station, p3]) p3s[-1][-1] = p3s[-1][-1][:-1]+"。" p3s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

自动根据数据生成降雨量实况Word报告

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

结果:

[['A站', '各区域降雨量在0.0~16.0mm之间,除548ad区域、1bafe区域、51a45区域、53f42区域降雨量较往年偏高0.1~7.41mm外,其余各区域降雨量较往年偏低0.4~3.4mm;'], ['B站', '各区域降雨量在0.0~5.3mm之间,除54ac3区域降雨量较往年无变化外,各区域降雨量较往年偏高和偏低的数量持平,其中16d40区域、592ac区域降雨量较往年偏低0.2~0.5mm,32046区域、4e6f0区域降雨量较往年偏高0.5~1.1mm;'], ['C站', '各区域降雨量在1.3~3.5mm之间,除3722c区域降雨量较往年偏高1.4mm外,其余各区域降雨量较往年偏低0.6~2.9mm;'], ['D站', '各区域降雨量在0.0~5.5mm之间,各区域降雨量较往年偏高和偏低的数量持平,其中66955区域、7639e区域、1c5ff区域降雨量较往年偏低0.9~3.1mm,2d91d区域、78896区域、25464区域降雨量较往年偏高0.9~1.6mm;'], ['E站', '各区域降雨量在7.3~13.6mm之间,各区域降雨量均较往年偏高4.0~9.1mm。']]

1

2

3

4

5

6

7

8

可能是我还没有想出较好的封装方式导致代码变得这么复杂,如果有巧妙解决这个问题方法的朋友,希望能够一起探讨。

将组织好的文本写入到word文档中

word模板文件docxtemplate.docx的内容:

一、{{ month }}月各气象观测站降雨量实况 (一)降水 {{ p1 }} {{ p2 }} {%p for station,p3 in p3s %} {{ station }}:{{ p3 }} {%p endfor %}

1

2

3

4

5

6

7

即:

python渲染代码:

from docxtpl import DocxTemplate tpl = DocxTemplate("docxtemplate.docx") context = { 'month': month, 'p1': p1, 'p2': p2, 'p3s': p3s, } tpl.render(context) tpl.save("11月降雨量报告.docx")

1

2

3

4

5

6

7

8

9

10

11

执行完毕,得到word报告:

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:如何花点钱突破华为云CCE服务的“防线”
下一篇:怎么在Excel表格中的数据快速转置成多列数据
相关文章