DIKW体系(Data-Information-Knowlege-Wisdom)

网友投稿 1132 2022-05-30

这个世界上,失败的人除了天分太差之外,

只有以下几点,懒,方向不对,方法不对,没有坚持。你是哪一种呢?

关于DIKW体系

DIKW体系是关于数据、信息、知识及智慧的体系,可以追溯至托马斯·斯特尔那斯·艾略特所写的诗《岩石》。在首段,他写道:“我们在哪里丢失了知识中的智慧?又在哪里丢失了信息中的知识?”(Where is the wisdom we have lost in knowledge? / Where is the knowledge we have lost in information?)。

1982年12月,美国教育家哈蓝·克利夫兰引用艾略特的这些诗句在其出版的《未来主义者》一书提出了“信息即资源”(Information as a Resource)的主张。

其后,教育家米兰·瑟兰尼、管理思想家罗素·艾可夫进一步对此理论发扬光大,前者在1987年撰写了《管理支援系统:迈向整合知识管理》(Management Support Systems: Towards Integrated Knowledge Management ),后者在1989年撰写了《从数据到智慧》(“From Data to Wisdom”,Human Systems Management )。

DIKW体系将数据、信息、知识、智慧纳入到一种金字塔形的层次体系,每一层比下一层都赋予的一些特质。原始观察及量度获得了数据、分析数据间的关系获得了信息。在行动上应用信息产生了知识。智慧关心未来,它含有暗示及滞后影响的意味。

DIKW体系就是关于资料、资讯、知识及智慧的体系。当中每一层比下一层赋予某些[特质。资料层是最基本的。资讯层加入内容。知识层加入“如何去使用”,智慧层加入“什么时候才用”。如此,DIKW体系是一个模型让我们了解分析、重要性及概念工作上的极限。DIKW体系常用于资讯科学及知识管理。

DIKW体系透过以下的步骤来协助研究及分析:

原始观察及量度获得了资料。

分析资料间的关系获得了资讯。这些资讯可以回答简单问题,譬如:谁?什么?哪里?什么时候?为什么?资讯是信息,意味着有听众及目的。

在行动上应用资讯产生了知识。知识可以回答“如何?”的问题。知识是一些可行的关系及习惯工作方式。

透过智者间的沟通及自我反省而利用知识会产生了智慧。我们可以利用智慧解答关于行动的为什么及什么时候的问题。智慧是关心未来。它含有暗示及滞后影响的意味。

数据(Data)

数据,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件的一组离散的客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。

信息(Information)

信息,又称资讯,普遍存在于自然界和人类社会活动中,它的表现形式远远比物质和能量复杂。但又远比他们简单,其实信息就是“物质和能量,及其自身‘信息’与其属性的标识、表现。

作为一个概念,信息有着多种多样的含义。一般来说,与信息这一概念密切相关的概念包括约束(constraint)、沟通(communication)、控制、数据、形式、指令、知识、含义、精神刺激、模式、感知以及表达。

知识(Knowlege)

知识是对某个主题确信的认识,并且这些认识拥有潜在的能力为特定目的而使用。认知事物的能力是哲学中充满争议的中心议题之一,并且拥有它自己的分支—知识论。从更加实用的层次来看,知识通常被某些人的群体所共享,在这种情况下,知识可以通过不同的方式来操作和管理项目管理者联盟文章

智慧(Wisdom)

智慧,可以指思考分析、通情达理或寻求真理的能力,它和智力、聪明不同,智慧更重视人生哲学上的能力。

DIKW体系(Data-Information-Knowlege-Wisdom)

有智慧的人称为智者。中国古代“知”与“智”通,故“知”就是“智慧”。

解释

数据、信息、知识与智慧的关系

通过DIKW模型分析,可以看到数据、信息、知识与智慧之间既有联系,又有区别。数据是记录下来可以被鉴别的符号。它是最原始的素材,未被加工解释,没有回答特定的问题,没有任何意义;信息是已经被处理、具有逻辑关系的数据,是对数据的解释,这种信息对其接收者具有意义。

知识是从相关信息中过滤、提炼及加工而得到的有用资料。特殊背景/语境下,知识将数据与信息、信息与信息在行动中的应用之间建立有意义的联系,它体现了信息的本质、原则和经验。此外,知识基于推理和分析,还可能产生新的知识。最后来看智慧,智慧,是人类所表现出来的一种独有的能力,主要表现为收集、加工、应用、传播知识的能力,以及对事物发展的前瞻性看法。在知识的基础之上,通过经验、阅历、见识的累积,而形成的对事物的深刻认识、远见,体现为一种卓越的判断力。

整体来看,知识的演进层次,可以双向演进。从噪音中分拣出来数据,转化为信息,升级为知识,升华为智慧。这样一个过程,是信息的管理和分类过程,让信息从庞大无序到分类有序,各取所需。这就是一个知识管理的过程。反过来,随着信息生产与传播手段的极大丰富,知识生产的过程其实也是一个不断衰退的过程,从智慧传播为知识,从知识普及为信息,从信息变为记录的数据。

知识的内涵与价值

应用DIKW体系基于对数据、信息、知识进行对比分析,可以得出知识内涵的主要内容,即知识来源于信息,但又不是信息的子集,它是经过“理解”后,关联了具体情境的、可以指导“如何”行动的信息,它具有如下几个特征:

隐性特征:需要从信息中进行归纳、总结、提炼;

行动导向特征:知识是信息的具体应用,能够直接推动人的决策和行为,加速行动过程;

资本特征:是企业重要资产,可以通过应用获得价值;

情境特征:在规定的情境下起作用;

延展生长特征:知识在应用、交流的过程中,被不断丰富和拓展;

生命特征:知识是有产生、发展、衰退的生命周期

这种内涵下,知识的价值又是什么呢?如前所述,数据是数字、文字、图像、符号等,在没有被处理之前,本身不代表任何潜在的意义。而当通过某种方式对数据进行组织和分析时,数据的意义才显示出来,从而演变为信息,信息可以对某些简单的问题给予解答,譬如:谁?什么?哪里?什么时候?知识是在对信息进行了筛选、综合、分析等等过程之后产生的。它不是信息的简单累加,往往还需要加入基于以往的经验所作的判断。因此,知识可以解决较为复杂的问题,可以回答“如何?”的问题,能够积极地指导任务的执行和管理,进行决策和解决问题。

综上,在当今海量数据、信息爆炸时代下,知识起到去伪存真、去粗存精的作用。知识使信息变得有用,可以在具体工作环境中,对于特定接收者解决“如何”开展工作的问题,提高工作的效率和质量。同时,知识的积累和应用,对于启迪智慧,引领未来起到了非常重要的作用。

最后,有一点需要补充说明的是,数据、信息、知识依赖于语境、依赖于接收者本身,三者之间的区别并非泾渭分明。某个经过加工的数据对某个人来说是信息,而对另外一个人来说则可能是数据;一个系统或一次处理所输出的信息,可能是另一个系统或另一次处理的原始数据。同时,在某个语境下是知识的内容,在另外的语境中,可能就是信息,甚至是无意义的数据。因此,在进行数据、信息与知识的研究与应用时,要与特定语境(即人、任务等)进行结合才有意义。

http://www.irisable.com/2014-02-26/653072.html

5G教育

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:操作系统课程设计
下一篇:深入理解 HttpSecurity【源码篇】
相关文章