深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

网友投稿 1248 2022-05-30

深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

前言

(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。

SGD

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

选择合适的learning rate比较困难

对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了

SGD容易收敛到局部最优,在某些情况下可能被困在鞍点【但是在合适的初始化和学习率设置下,鞍点的影响其实没这么大】

Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

特点:

下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速

下降中后期时,在局部最小值来回震荡的时候,,使得更新幅度增大,跳出陷阱

在梯度改变方向的时候,能够减少更新

总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

Nesterov

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。

将上一节中的公式展开可得:

momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

Adagrad

Adagrad其实是对学习率进行了一个约束。即:

特点:

前期较小的时候, regularizer较大,能够放大梯度

后期较大的时候,regularizer较小,能够约束梯度

适合处理稀疏梯度

缺点:

由公式可以看出,仍依赖于人工设置一个全局学习率

设置过大的话,会使regularizer过于敏感,对梯度的调节太大

中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束

Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。

Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

特点:

训练初中期,加速效果不错,很快

训练后期,反复在局部最小值附近抖动

RMSprop

RMSprop可以算作Adadelta的一个特例:

当时,就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

特点:

其实RMSprop依然依赖于全局学习率

RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间

适合处理非平稳目标

对于RNN效果很好

Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

特点:

结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点

对内存需求较小

为不同的参数计算不同的自适应学习率

也适用于大多非凸优化

适用于大数据集和高维空间

Adamax

Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:

Nadam

Nadam类似于带有Nesterov动量项的Adam。公式如下:

经验之谈

对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值

SGD通常训练时间更长,容易陷入鞍点,但是在好的初始化和学习率调度方案的情况下,结果更可靠

如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。

Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。

在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了… …

损失平面等高线

在鞍点处的比较

引用

[1]Adagrad

[2]RMSprop[Lecture 6e]

[3]Adadelta

[4]Adam

[5]Nadam

[6]On the importance of initialization and momentum in deep learning

[7]Keras 中文文档

深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

[8]Alec Radford(图)

[9]An overview of gradient descent optimization algorithms

[10]Gradient Descent Only Converges to Minimizers

[11]Deep Learning:Nature

机器学习 深度学习

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:OpenCV与Open3D等开源视觉库的详细笔记
下一篇:两种方式实现Spring 业务验证
相关文章