关于机器学习的三个阶段
668
2022-05-30
在中国文化传统中,诗有着极为独特而崇高的地位。诗歌开拓了人类的精神世界,给人们带来了无限的美感。本文将介绍如何使用一站式AI开发平台,自动生成属于你的藏头诗。
环境准备
ModelArts: https://www.huaweicloud.com/product/modelarts.html
AI开发平台ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
OBS: https://www.huaweicloud.com/product/obs.html
对象存储服务(Object Storage Service,OBS)提供海量、安全、高可靠、低成本的数据存储能力,可供用户存储任意类型和大小的数据。适合企业备份/归档、视频点播、视频监控等多种数据存储场景。
模型和素材准备
文件已经上传至obs共享桶,在notebook中使用代码可以直接读取。
源文件地址:https://github.com/jinfagang/tensorflow_poems
实际操作
首先,在ModelArts中创建开发环境:在“开发环境”选项下选择notebook。
创建一个notebook,打开JupyterLab,选择tensorflow环境,开始体验。
使用华为云提供的接口,使用代码将公有桶poems中的文件拷贝到本地work路径下:
import moxing as mox import os obspath = 'obs://poems/poems/' #目标文件夹 localpath = os.path.join(os.environ['HOME'],'work/test/') #本地文件夹 mox.file.copy_parallel(obspath ,localpath) #批量拷贝obs://poems
安装指定版本numpy:
!pip install --upgrade pip !pip install numpy==1.16.0
导入包,定义train函数:
import tensorflow as tf from poems.model import rnn_model from poems.poems import process_poems, generate_batch tf.app.flags.DEFINE_integer('batch_size', 64, 'batch size.') tf.app.flags.DEFINE_float('learning_rate', 0.01, 'learning rate.') tf.app.flags.DEFINE_string('model_dir', os.path.abspath('./model'), 'model save path.') tf.app.flags.DEFINE_string('file_path', os.path.abspath('./data/poems.txt'), 'file name of poems.') tf.app.flags.DEFINE_string('model_prefix', 'poems', 'model save prefix.') tf.app.flags.DEFINE_integer('epochs', 50, 'train how many epochs.') FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('f', '', 'kernel') def run_training(): if not os.path.exists(FLAGS.model_dir): os.makedirs(FLAGS.model_dir) poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path) batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int) input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) end_points = rnn_model(model='lstm', input_data=input_data, output_data=output_targets, vocab_size=len( vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=FLAGS.learning_rate) saver = tf.train.Saver(tf.global_variables()) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: sess.run(init_op) start_epoch = 0 checkpoint = ("./model/poems-42") if checkpoint: saver.restore(sess, "./model/poems-42") print("## restore from the checkpoint {0}".format(checkpoint)) start_epoch += int(checkpoint.split('-')[-1]) print('## start training...') try: n_chunk = len(poems_vector) // FLAGS.batch_size for epoch in range(start_epoch, FLAGS.epochs): n = 0 for batch in range(n_chunk): loss, _, _ = sess.run([ end_points['total_loss'], end_points['last_state'], end_points['train_op'] ], feed_dict={input_data: batches_inputs[n], output_targets: batches_outputs[n]}) n += 1 if batch%50==0: print('Epoch: %d, batch: %d, training loss: %.6f' % (epoch, batch, loss)) if epoch % 6 == 0: saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) except KeyboardInterrupt: print('## Interrupt manually, try saving checkpoint for now...') saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) print('## Last epoch were saved, next time will start from epoch {}.'.format(epoch))
开始训练(也可以跳过训练,直接调用模型42进行预测):
def main(): run_training() if __name__ == '__main__': main()
导入预测相关包并加载checkpoints:
import numpy as np start_token = 'B' end_token = 'E' model_dir = './model/' corpus_file = './data/poems.txt' lr = 0.0002 def to_word(predict, vocabs): predict = predict[0] predict /= np.sum(predict) sample = np.random.choice(np.arange(len(predict)), p=predict) if sample > len(vocabs): return vocabs[-1] else: return vocabs[sample] def gen_poem(begin_word): tf.reset_default_graph() batch_size = 1 print('## loading corpus from %s' % model_dir) poems_vector, word_int_map, vocabularies = process_poems(corpus_file) input_data = tf.placeholder(tf.int32, [batch_size, None]) end_points = rnn_model(model='lstm', input_data=input_data, output_data=None, vocab_size=len( vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=lr)#,reuse=True saver = tf.train.Saver(tf.global_variables()) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: sess.run(init_op) saver.restore(sess, "./model/poems-48") x = np.array([list(map(word_int_map.get, start_token))]) [predict, last_state] = sess.run([end_points['prediction'], end_points['last_state']], feed_dict={input_data: x}) word = begin_word or to_word(predict, vocabularies) poem_ = '' i = 0 while word != end_token: poem_ += word i += 1 if i > 24: break x = np.array([[word_int_map[word]]]) [predict, last_state] = sess.run([end_points['prediction'], end_points['last_state']], feed_dict={input_data: x, end_points['initial_state']: last_state}) word = to_word(predict, vocabularies) return poem_ def pretty_print_poem(poem_): poem_sentences = poem_.split('。') for s in poem_sentences: if s != '' and len(s) > 10: print(s + '。')
调用模型生成诗歌
poem = gen_poem('人') pretty_print_poem(poem_=poem)
至此,本次实现先告一段落,关于多个字的藏头诗生成还没进行探索,欢迎在评论区分享指导。
另外,有兴趣的小伙伴欢迎加入MDG中国矿业大学站,QQ群:781169338,共建 ModelArts 生态!
AI AI开发平台ModelArts Jupyter notebook 对象存储服务 OBS
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。