华为突破分布式数据库存储技术,打通数字化转型“雄关漫道”

网友投稿 561 2022-05-30

2019年,我们将进入数字化转型的攻关期。所谓“攻关期”即数字化转型2.0阶段,需要攻坚企业关键业务上云和数字化转型改造的课题。在一份市场调查公司IDC的报告中指出:IDC自2014年提出数字化转型以来,看到企业在数字化转型层面已经投入了大量人力物力,但是效果并不理想,有一些企业已经成功屹立在潮头,有一些企业在向上游进发,还有一些企业只能在浪潮的挟裹中被动前行。

对于企业来说,数字化转型是“雄关漫道”。IDC认为,目前阶段来看,企业亟待解决的是数字化能力提升,包括:与业务的深入结合能力;数据处理和挖掘能力;以及IT技术运营和管理能力。特别是数据处理和挖掘能力,因为数字化转型推进企业从以流程为核心向以数据为核心转型,对海量、异构、多类型的数据处理和挖掘能力是释放数据价值的前提,对数据全生命周期的管控治理是释放数据价值的保障。而随着数字化转型引入大量新技术而导致IT复杂度变高,企业IT技术运营和管理能力是提升企业“IT生产力”的关键。

攻关数字化转型的“雄关漫道”,需要一个具备融合、智能、可传承三大特性的数字平台。这是2019年3月华为与IDC联合推出的《拥抱变化,智胜未来—数字平台破局企业数字化转型》白皮书所提出的观点。融合主要指把传统技术和创新技术相结合;智能主要指平台智能化和智能化能力输出;可传承主要指解耦、功能复用、可配置等理念打造的架构。而承载这三大观点的,就是新一代分布式企业级技术。

华为突破分布式数据库和存储技术,打通数字化转型“雄关漫道”

2019年5月15日,华为发布了业界首款支持ARM架构的新一代智能分布式数据库GaussDB以及分布式存储FusionStorage 8.0,作为新一代数据基础设施,诠释了具备融合、智能、可传承三大特性的数字平台。华为常务董事、ICT战略与Marketing总裁汪涛在发布会上表示,千行百业正在加速智能化进程,越来越多的企业已经意识到数据基础设施是智能化成功的关键。华为围绕计算、存储和数据处理三个领域重定义数据基础设施,加速迈向智能时代。

GaussDB:业界首款AI-Native分布式数据库

今天所讨论云和工业互联网等概念的背后是一个新时代的到来,这就是体系架构大迁徙。传统企业级技术是在单体应用和单机环境中,保证数据存储、调用等操作的高可靠、高可用、高稳定,特别是满足金融级事物处理的ACID(原子性、一致性、隔离性和耐久性)要求,为企业关键业务提供数据管理支撑。随着企业技术向云架构迁移,数据库技术也面临转型。

2018年,基于云计算技术的分布式数据库成为了业界的热点。简单理解,云计算技术就是把“单机”环境替换为由X86服务器机群所组成的分布式计算环境。原先由几台小型机完成的计算任务,要分散到上百甚至上千台X86服务器上,而且还可能跨数据中心操作,挑战可想而之。特别是在线支付等金融级业务,不能在断网或网络连接有问题时出错,也不能因响应速度慢而影响用户体验。

2018年8月,中国支付清算协会与中国信息通信研究院联合举办了“金融分布式事务数据库研讨会”,与业界厂商和用户共商核心数据库分布式转型之路,同时发布了《金融分布式事务数据库》白皮书。金融分布式事务数据库的工作推进,为分布式数据库进入企业关键业务系统,提供了产业化支撑。而华为作为企业ICT解决方案供应商,早在2012年就开始研发面向大数据分析的数据仓库,在基于传统关系型数据库SQL引擎和事务强一致性等基础上,进行了分布式、并行计算的改造,历时6年打造了面向PB级海量数据分析的分布式数据库。

在OLAP数据仓库之外,华为与行业用户合作了面向OLTP的分布式事务型数据库研发。2017年,华为与招商银行合作成立了分布式数据库联合创新实验室,研发具有高性能企业级内核、完整支持分布式事物、满足金融行业对数据强一致要求、单机事物处理能力要达到每分钟百万级别等的OLTP分布式数据库。

本次发布的GaussDB数据库新品包括:联机事务处理OLTP数据库、联机分析处理OLAP数据库、事务和分析混合处理HTAP数据库。而华为GaussDB数据库将AI技术融入数据库设计、开发、验证、调优、运维等环节,可实现基于AI的自调优、自诊断自愈、自运维,让数据库更高效、更智能,引领数据库架构的发展。

更进一步,本次发布的GaussDB系列数据库是业界首款支持ARM芯片的分布式数据库。华为推动计算架构从以X86+GPU为主的单一计算架构到以X86+GPU+ARM64+NPU为主的异构计算架构快速发展。基于X86架构,华为引入AI管理和智能加速能力,率先推出了智能服务器FusionServer Pro;基于ARM64打造了业界性能最强的TaiShan服务器;基于Ascend芯片的Atlas智能计算,实现了业界首个端边云协同的人工智能平台。而GaussDB可充分利用并融合ARM、X86、GPU、NPU等多种异构算力组合,大幅提升数据库性能。

汪涛强调,作为全球首款AI-Native数据库,GaussDB有两大革命性突破:第一,首次将人工智能技术引入数据库的全生命周期流程,实现自运维、自管理、自调优和故障自诊断。在交易、分析和混合负载场景下,基于最优化理论,首创深度强化学习自调优算法,把业界平均性能提升60%。第二,支持异构计算,充分发挥X86/ARM/GPU/NPU多样性算力优势,最大化数据库性能,在权威标准测试集TPC-DS上,华为GaussDB排名第一。GaussDB还支持本地部署、私有云、公有云等多种场景。

FusionStorage 8.0:新一代分布式存储

在以云计算为代表的分布式计算环境中,数据管理解决方案除了需要分布式数据库外,为了更好的扩缩容以及满足多样化数据存储需求,计算与存储分离已经成为分布式数据库设计的主要架构。分布式云化架构,就是要支持计算、存储分离和多租户等架构设计要求。

GaussDB已经从数据库层面实现了高可用、高可靠、高稳定的分布式数据库,本次发布的FusionStorage 8.0则是分布式存储架构,创新地实现一套系统同时支持块、文件、对象、HDFS协议,1套存储支持4类存储能力,适用于全业务场景混合负载,最终让“一个数据中心一套存储”成为可能。

IDC发布的《中国软件定义存储(SDS)及超融合存储(HCI)系统市场季度跟踪报告,2018年第四季度》显示,2018年,软件定义存储市场达到了54.9%的同比增长。软件定义存储在中国整体存储市场的占有率稳步上升,分别达到了22.1%的市场占有率。华为凭借文件解决方案在政府、广电和电信等行业得到认可,在2018年中国软件定义存储市场排名第一。

FusionStorage 8.0采用华为ARM-based处理器鲲鹏920加速,使IOPS提升 20%,结合华为AI Fabric无损网络,时延进一步降低15%。基于华为在计算、网络和存储领域多年的芯片和算法积累,FusionStorage 8.0在SPC-1的性能测试中,单节点性能达到了16.8万IOPS以及1ms以内时延,成为承载企业关键应用的新选择。

此外,通过华为云的云上训练及本地AI芯片,FusionStorage 8.0将智能管理贯穿业务使用的全生命周期,如业务上线前对存储资源的规划,使用过程中的风险预判及故障定位,大幅提升存储效率,帮助行业客户应对智能时代的数据新挑战。

汪涛在发布会上强调,新一代智能分布式存储FusionStorage 8.0通过重定义存储架构,从“Storage for AI”和“AI in Storage”两个维度实现效率大幅提升,引领存储智能化。首先,“Storage for AI”通过融合共享,让AI分析更高效。其次,“AI in Storage”率先将AI融入存储全生命周期管理,从资源规划、业务发放、系统调优、风险预测、故障定位等方面实现智能运维。

辽宁移动就采用了华为FusionStorage。作为辽宁省内最大的移动通信运营商,辽宁移动一直在探索先进的存储方案在自身IT系统的应用。由于5G的快速发展,辽宁移动关键数据库的应用也向云化方向发展,分布式存储也要满足其可靠性和高性能要求。华为在深入分析辽宁移动需求后,首先在边缘开发测试业务小规模试点分布式存储,进行了大量的实验和测试后性能和可靠性都达到了预期,最终决定将全部业务迁移至FusionStorage。该方案通过采用双活、可写快照、端到端DIF等特性,顺利完成Billing、经营分析、B2B等系统从老旧存储至FusionStorage的搬迁工作,助力辽宁移动的存储架构迈入新的历史阶段。

值得一提的是,华为分布式数据库与华为分布式存储深度结合,把数据库的操作下沉到存储节点,极大提升了分布式数据库的性能。利用新的网络技术和人工智能技术,华为帮助用户提升数据中心的吞吐量,提升网络应用的可伸缩性,并且能自动调优。

除了推出新一代突破性的分布式数据库和存储技术外,华为也积极与客户、伙伴在数据库与存储领域,从行业应用、平台工具、标准组织和社区等多个层面共建开放、合作、共赢的产业生态。在行业应用层面,华为与软通智慧、神州信息、东华软件、易华录、用友政务、亚信国际等独立软件开发商长期合作;在平台和工具层面,华为与Tableau、帆软、ARM、Veritas等合作伙伴联合创新;在标准组织和社区层面,华为深度参与OpenSDS、中国人工智能产业联盟、OCP、OpenStack、CNCF基金会等组织和社区的建设。

总结来说,华为全线分布式数据库和分布式存储产品的发布,是华为具备融合、智能、可传承三大特性数字平台的最新成果。华为分布式数据库与分布式存储结合,能消除企业各业务系统数据孤岛,构建面向行业场景的数据建模、分析和价值挖掘能力,对多源异构的数据进行汇聚、整合和分析,形成统一的全量数据和数据底座,实现数据价值挖掘和共享。而基于AI的智能化,可对基础设施进行高效的管理,为行业应用开发和迭代赋能,全面帮助企业突破关键应用上云的“雄关漫道”。(文/宁川)

数据库 分布式

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:物联网为什么需要5G?
下一篇:Python 爬虫进阶五之多线程的用法
相关文章