破除“迷信”!周志华:深度学习新模型“深度森林”,有望打破神经网络垄断
465
2022-05-30
出品 | AI科技大本营
近日,中科创达副总裁孙力在 Thunder World 2018 嵌入式 AI 人工智能技术大会上发表了主题演讲,主要分享了以下三方面内容:
视觉的传统技术和挑战
嵌入式视觉+AI=智能视觉
智能视觉赋能行业的智能化升级转型
视觉的传统技术和挑战
以手机相机为例,孙力讲述了其视觉系统的复杂性。无论是底层驱动、核心算法的曝光、对焦,到最后视频处理,相机的系统架构异常复杂。如果要做一个优秀的图像处理系统,面临摄像头模组的光学特性、图象处理的算法、芯片加速、画质调优等各方面的挑战。
另一大 麻烦是硬件碎片化,不同的操作系统要对画质做一些复杂的调优流程(实验室和实际生活场景),此外需善用硬件加速,解决功耗和性能问题。
中科创达在画质调优方面的竞争力是调试整个图像的 Pipeline 和 3A ,包括亮度、白平衡、对比度要精准对焦,不断进行调试,做大量画质的调优,以产生最优图像采集。调试过程分成三个阶段:第一,先把基础的软件、驱动做好;第二,实验室 tuning,包含 LSC, AWB, AE, Gamma, 对比度增强, CCM, DPC 等等;第三,真实场景 tuning,与参-对比拍摄。
他以汽车 ADAS 芯片为例讲述了要满足高画质要求可能达到的技术趋势,首先是从外置的 ISP,到 Bayer sensor 的转变,目前主流的方案是用外置的 ISP,但在汽车里会经历类似于手机从功能机到智能机的演变。孙力称,在自动驾驶芯片的图像处理部分中科创达已有一定布局。
嵌入式 AI 算法应用的挑战
目前很多算法都基于 2D 技术,但3D 技术会越来越普及。孙力指出,这主要取决于以下四个问题的解决:BOM 的成本,由于规模化的问题,还没有降低到平民化;其次,多种的光学设计,碎片化(ToF、结构光、双目、主动双目等);嵌入式的 SoC 的 depth map 的运算能力(pc 辅助到嵌入式 ARM based);多套使用的完整建模问题;RGBD,基于 3D 的人工智能学术进展。中科创达要解决的是图像质量问题,比如宽动态/HDR、降噪,导入 AI 技术来解决图像质量问题。
嵌入式 AI 算法挑战主要在哪儿?孙力给出了三点:计算资源有限,终端处理平台碎片化;另外应用场景和需求多样化,准确率、速度等方面也需要做出取舍。
具体的优化策略是什么?在他看来,最重要的还是要做深度结合的系统化设计。硬件上,在满足功耗、发热等限制条件的前提下,实现 AI 运算加速引擎,其次是 DSP/GPU/NPU 等芯片的加速,同时要与芯片平台进行深度合作。
而软件方面,最核心的是降低算法模型的计算量,这需要设计适合的嵌入式平台的模型架构,裁剪模型,与场景的深度整合和适配优化以及共享深度学习模型中的超参数。
大会现场,中科创达展示了基于骁龙 845 芯片的终端智能分析盒子 AI Kit。
智能视觉赋能行业的智能化升级转型
从智能视觉赋能行业方面,他的感受有三点:第一,客户一定期望有一个整体解决方案,而不只是 AI。在整个过程中要帮客户考虑数据获取、数据隐私、训练、私有云部署、生产管理系统等等。
第二,客户衡量 AI 的价值不是多么高大上,而是根据生产力提升,运行效率优化,及经营业绩能承受的预算能力来进行反推,这和目前昂贵的 AI 投入成本是个矛盾。
第三,行业客户的工作流程,部门职能等还未能围绕先进生产力来进行部署和优化,客户期望一次性投入建设一个人工智能平台,可以一劳永逸否认自我训练,升级和部署,对比于现在需要定制化的算法,未来围绕需要解决的领域问题,少数的人力服务于算法的流程需要被建立。
最后,孙力再次强调,要给客户提供整体解决方案,要从 AI 模型的构建到整个生命周期管理起来,而不仅是提供算法。另外,他表示不能太迷信 AI 算法,有时还要用传统图象处理算法,最终的目的是帮客户解决问题。
---------------------
来源:CSDN
原文:https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/85092970
机器视觉 AI
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。