如何让序号自动增加(序号自动增减怎么做)
639
2022-05-30
Python基础专栏四之Matplotlib(中)
图表的样式参数
导入相关模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
linestyle参数
plt.plot([i**2 for i in range(100)],
linestyle = '-.')
# '-' solid line style
# '--' dashed line style
# '-.' dash-dot line style
# ':' dotted line style
marker参数
s = pd.Series(np.random.randn(100).cumsum())
s.plot(linestyle = '--',
marker = '.')
# '.' point marker
# ',' pixel marker
# 'o' circle marker
# 'v' triangle_down marker
# '^' triangle_up marker
# '<' triangle_left marker
# '>' triangle_right marker
# '1' tri_down marker
# '2' tri_up marker
# '3' tri_left marker
# '4' tri_right marker
# 's' square marker
# 'p' pentagon marker
# '*' star marker
# 'h' hexagon1 marker
# 'H' hexagon2 marker
# '+' plus marker
# 'x' x marker
# 'D' diamond marker
# 'd' thin_diamond marker
# '|' vline marker
# '_' hline marker
color参数
plt.hist(np.random.randn(100),
color = 'g',alpha = 0.8)
# alpha:0-1,透明度
# 常用颜色简写:red-r, green-g, black-k, blue-b, yellow-y
df = pd.DataFrame(np.random.randn(1000, 4),columns=list('ABCD'))
df = df.cumsum()
df.plot(style = '--.',alpha = 0.8,colormap = 'GnBu')
# colormap:颜色板
style参数,可以包含linestyle,marker,color
ts = pd.Series(np.random.randn(1000).cumsum(), index=pd.date_range('1/1/2000', periods=1000))
ts.plot(style = '--g.',grid = True)
# style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)
# plot()内也有grid参数
整体风格样式
import matplotlib.style as psl
print(plt.style.available)
# 查看样式列表
psl.use('ggplot')
ts = pd.Series(np.random.randn(1000).cumsum(), index=pd.date_range('1/1/2000', periods=1000))
ts.plot(style = '--g.',grid = True,figsize=(10,6))
# 一旦选用样式后,所有图表都会有样式,重启后才能关掉
子图
在matplotlib中,整个图像为一个Figure对象,在Figure对象中可以包含一个或者多个Axes对象。
每个Axes(ax)对象都是一个拥有自己坐标系统的绘图区域。
plt.figure, plt.subplot
导入相关模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
子图创建1 - 先建立子图然后填充图表
fig = plt.figure(figsize=(10,6),facecolor = 'gray')
ax1 = fig.add_subplot(2,2,1) # 第一行的左图
plt.plot(np.random.rand(50).cumsum(),'k--')
plt.plot(np.random.randn(50).cumsum(),'b--')
# 先创建图表figure,然后生成子图,(2,2,1)代表创建2*2的矩阵表格,然后选择第一个,顺序是从左到右从上到下
# 创建子图后绘制图表,会绘制到最后一个子图
ax2 = fig.add_subplot(2,2,2) # 第一行的右图
ax2.hist(np.random.rand(50),alpha=0.5)
ax4 = fig.add_subplot(2,2,4) # 第二行的右图
df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax4.plot(df2,alpha=0.5,linestyle='--',marker='.')
# 也可以直接在子图后用图表创建函数直接生成图表
子图创建2 - 创建一个新的figure,并返回一个subplot对象的numpy数组 → plt.subplot
fig,axes = plt.subplots(2,3,figsize=(10,4))
ts = pd.Series(np.random.randn(1000).cumsum())
print(axes, axes.shape, type(axes))
# 生成图表对象的数组
ax1 = axes[0,1]
ax1.plot(ts)
plt.subplots,参数调整
fig,axes = plt.subplots(2,2,sharex=True,sharey=True)
# sharex,sharey:是否共享x,y刻度
for i in range(2):
for j in range(2):
axes[i,j].hist(np.random.randn(500),color='k',alpha=0.5)
plt.subplots_adjust(wspace=0,hspace=0)
# wspace,hspace:用于控制宽度和高度的百分比,比如subplot之间的间距
Python
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。