轻松搭建网盘系统,实现文件共享与安全存储的完美结合
445
2023-05-08
从制造到“智能制造”政策视野中的制造业升级
制造业直接体现了一个国家的生产力水平。最近几年,随着信息技术的快速发展,制造业面临着与信息技术融合的选择。
新一代人工智能与制造相关联,会是怎样的情景呢?
智能与制造之间未来将会发展出两种路径,一种是“制造智能化”,即继续沿着现有的智能制造路线深化;另一种是“智能制造化”,所有的产品都是某种算法的实体化,也即“泛机器人”时代来临。在未来一段时间内,这两条路线可能是并存的。
从制造到“智能制造”政策视野中的制造业升级
这里所指的“智能制造”主要是“智能装备和智能工厂”,而“智能终端产品”和“互联网+”带来的产业链则另外归类。智能制造的基础是信息物理系统(Cyber-Physical System,简称CPS),这个概念被认为是智能制造的核心。
2015年国务院印发的《关于积极推进“互联网+”行动的指导意见》中,在“互联网+”协同制造部分提到:推动互联网与制造业融合,提升制造业数字化、网络化、智能化水平,加强产业链协作,发展基于互联网的协同制造新模式。其主旨在于推进制造业与互联网的融合,从而形成新的产业生态体系,集众智、聚众力。
在2016年国务院印发的《关于深化制造业与互联网融合发展的指导意见》中,这一思路继续得到贯彻。该指导意见的主要目标是:制造业互联网“双创”平台成为促进制造业转型升级的新动能来源,形成一批示范引领效应较强的制造新模式,初步形成跨界融合的制造业新生态,制造业数字化、网络化、智能化取得明显进展,成为巩固我国制造业大国地位、加快向制造强国迈进的核心驱动力。这一指导意见强调以“双创”为抓手,促进制造业加上互联网后形成制造业新模式和新生态,成为制造业转型升级的新动能。
在以上的三个重要文件中,智能制造主要指的是智能工厂和智能设备,也包括智能终端产品。制造业与互联网的融合,形成新模式和新业态,从而取得新动能。所有这些,都是从制造业出发,选择适合与制造业相融合的信息技术。
具体实践中的制造业智能化
现实中智能制造的发展与政策呼应。随着制造业与信息化的融合,制造业逐渐数字化,越来越多的数据得以汇聚在同一个数据平台。数据分析让制造业真正地具备了智能化的基础。基于制造业数字化和“互联网+”产生的大数据,系统平台再进行数据分析,从而形成知识和价值。
再以智能产品为例,传统的飞机发动机只是为了提供飞机的动力功能,但是当它被置入微型计算机后,就可以感知飞机的飞行路线,并通过网络将这些信息传给其他的机器。在震惊全球的“马航MH370”事件中,就是该飞机的发动机供应商而不是马来西亚航空公司,提供了该飞机航线的一些基本数据。
很显然,这些含有预测性功能的设备,能够反映飞行轨迹的发动机,已经具有了其“前身”完全不曾有的价值。而这些附加价值的来源,是数据和数据分析创造的。这是目前智能制造最主要的内涵。
但是总体而言,目前所讨论的智能制造距离真正意义上的智能制造还有相当的距离。按照中国工程院院长周济院士的观点,目前我们所讨论的智能制造还是1.0版本的,目标是实现制造业数字化、网络化,最重要的特征是在全面数字化的基础上实现网络互联和系统集成。而在未来的智能制造2.0系统,应是在制造业数字化、网络化的基础上,更进一步实现真正意义上的智能制造。
在今年刚刚发布的《新一代人工智能发展规划》中,也对智能制造提出了具体的目标:推进智能制造关键技术装备、核心支撑软件、工业互联网等系统集成应用,研发智能产品及智能互联产品、智能制造使能工具与系统、智能制造云服务平台,推广流程智能制造、离散智能制造、网络化协同制造、远程诊断与运维服务等新型制造模式,建立智能制造标准体系,推进制造全生命周期活动智能化。
这些目标,是在原有“互联网+”战略和《中国制造2025》的基础上,强调了人工智能技术在制造过程和产品智能化方面的作用,本质上是“制造+人工智能”。
毫无疑问,制造业与信息化、互联网以及人工智能技术的融合,都在帮助以“制造产品”为最终目的的制造业逐步走向智能化,尤其体现在制造过程的智能化和产品的智能化。但是不论制造过程如何智能,制造仍是主角,产品仍是目的,信息技术只是配角和手段。
从人工智能到“制造智能”
由于人们是在物理现实中生活,人工智能有时候必须以实体的形式与人交流。这是我们即将要看到的人工智能与制造业发生关系的一种新的趋势,即人工智能的实体化。这种实体化,也是一个制造的过程,或许我们可以称之为“制造智能”。
Echo本质上是人工智能的实体化
Echo名义上是一个音箱,但是据说拥有超过一万种技能。如果你要早起赶飞机,它可以提供叫醒服务;如果你喜欢自己下厨烹饪,它会告诉你很多菜谱;如果你在厨房做饭的时候想听书,你可以叫它读 Kindle 里面的电子书;当然如果你喜欢玩音乐,Echo可以本分地做一个音箱。很显然,Echo已经成为用户生活中的一部分。
Echo之所以成功,与它的技术内涵密切相关。虽然名义上是一个音箱,但它的核心技术在于语音交互平台Alexa。如果说 Echo是躯体,那么Alexa就是大脑,所有输入输出的信息都经由大脑处理。很有特色的是,Echo并没有触摸屏,它与人唯一的交流方式是语音。所以,Echo应用的语音交互是在很多场景要替代触摸屏的核心技术。而且,与竞争对手相比,Echo回应人声的时间只有1.5秒,这已经在人类的容忍范围之内。
语音互动的关键还在于深度学习。当前机器之所以可以识别人的语音,根本上是深度学习训练的结果。在深度学习中,样本库至关重要。如果处理后的声音与样本库不匹配,识别效果就不会太好。因此,技术的难点并不在于如何让声音越清晰越好,而是要越接近于训练样本库的特征越好。这要求声音感知和深度学习方面的技术有很强的组合能力。
更多的人工智能实体正在入场
就在本文撰写的这几天,来自Echo的大脑——Amazon的语音助手Alexa和来自微软的语音助手Cortana正式“牵手”。这也就意味着,当你需要在电脑上处理一些事情的时候,你可以借助虚拟机器人Cortana,而当你不在电脑旁的时候,你可以借助实体机器人Echo音响。所不同的是,对Cortana来说,你需要轻声细语;而对Echo,必须大声喊叫(这背后当然体现着微软和亚马逊不同的技术特长)。
“泛机器人”时代来临
随着新一代人工智能的发展,未来的社会将会是智能社会。这个社会将会是以大数据为基础,人工智能为动力,机器人为表现形式的智能社会。在这样的智能社会中,每一个物体都可能是机器人。理论上,未来的任何人造产品都是智能的。
但在近期,“制造智能化”和“智能制造化”这两条路线还将长时间并存。在前者的路线上,传统音箱公司可以借助人工智能技术让制造过程更加智能化,生产出质量更高的音箱。在后者的路线上,人工智能公司可以借助制造技术生产出叫“音箱”的语音助手,也可以是其他任何有应用价值的算法实体。
有意思的是,虽然现在机器人和人工智能被大家联系在一起,但是在过去,这可是完全不同的两个领域。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。