SENet双塔模型:在推荐领域召回粗排的应用及其它

网友投稿 1021 2022-05-30

前言

目前,双塔结构在推荐领域里已经是个常规方法了,在召回和粗排环节的模型选型中,被广泛采用。其实,不仅仅是在推荐领域,在其它领域,双塔结构也已经被越来越多得用起来了。比如,在当代搜索引擎的召回环节,除了常见的经典倒排索引来对Query和Document进行文本字面匹配外,经常也会增加一路基于Bert模型的双塔结构,将用户查询Query和搜索文档,各自通过一个塔形结构来打Embedding,以此增加Query和Document的深层语义匹配能力;再比如,在自然语言处理的QA领域,一般也会在第一步召回环节,上一个基于Bert模型的双塔结构,分别将问题Question和可能包含正确答案的Passage,通过双塔结构映射到同一个语义空间,并分别把Question和Passage打出各自的Embedding。

我的感觉,未来,双塔结构会在更多应用领域获得应用,这是个非常有生命力的模型。为啥呢?答案其实很简单:在面临海量候选数据进行粗筛的场景下,它的速度太快了,效果说不上极端好,但是毕竟是个有监督学习过程,一般而言也不差,实战价值很高,这个是根本。若一个应用场景有如下需求:应用面临大量的候选集合,首先需要从这个集合里面筛选出一部分满足条件的子集合,缩小筛查范围。那么,这种应用场景就比较适合用双塔模型。

上面说的是双塔模型的优点,所谓“天下没有免费的晚餐”,它为了速度快,是需要付出代价的,那么,代价是什么呢?就是要在一定程度上牺牲掉模型的部分精准性,而且这个代价是结构内生的,也就是说它这种结构必然会面临这样的问题。至于产生问题的具体原因

SENet双塔模型:在推荐领域召回粗排的应用及其它

深度学习

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:“迈向元宇宙的一小步”鲁班会开发者深度论坛精彩回顾
下一篇:需求工程系列(二)- 基于用例的需求管理框架
相关文章