CarbonData:大数据融合数仓新一代引擎

网友投稿 798 2022-05-30

金融领域随着数据与日俱增(如国内某大行,平均3亿笔业务/天,峰值6亿/天);业务驱动下的数据分析灵活性要求越来越高,不同业务的数据分系统构建,导致冗余严重,缺乏高效、统一的融合数仓,阻碍企业快速转型。如何对浪涌式的数据进行整合分析,发挥最大价值,金融机构对数据的处理提出了相应诉求具体表现如下:

第一,数据统一存储:为了节约成本,企业希望一份数据支持多种使用场景;减少数据孤岛和冗余,通过数据共享产生更大价值。

第二,高效:金融业务数据分析要求越来越高效、实时。

第三,易集成:提供标准接口,新的大数据方案与企业已采购的工具和IT系统要能无缝集成,支撑老业务快速迁移。

第四,大集群:区别于以往的单机系统,企业客户希望新的大数据方案能应对日益增多的数据,随时可以通过增加资源的方式横向扩展,无极扩容。

第五,开放生态:通过开源开放,让更多的客户和合作伙伴的数据连接在一起,发挥更大的价值。

存储和计算逻辑分离,开发CarbonData创新项目,满足上述诉求

华为针对上述典型诉求,从2013年开始调研分析业界大数据方案,发现每种技术都只能解决某种场景的诉求,不能同时满足上述的所有诉求,如:MPP数据库技术不能有效与Hadoop生态集成,数据不能统一共享存储;搜索类技术提升了性能,但是数据膨胀很大,不支持标准SQL、不能兼容老的业务,这促使了华为着手开发CarbonData项目。整个大数据时代的开启,可以说是源自于Google的MapReduce论文,他引发了Hadoop开源项目以及后续一系列的生态发展。他的“伟大”之处在于计算和存储解耦的架构,使企业的部分业务(主要是批处理)从传统的垂直方案中解放出来,计算和存储可以按需扩展极大提升了业务发展的敏捷性,让众多企业普及了这一计算模式,从中受益。CarbonData借鉴了这一理念,存储和计算逻辑上分离,通过索引技术让存储和计算物理上更接近,提升CPU和IO效率,实现超高性能的大数据分析:

列式存储:高效的列式数据组织,区别于行存,可以实现列裁剪和过滤下压,使OLAP查询性能更高。同时,CarbonData针对明细数据查询实现了深度优化,在需要返回所有列的场景下性能优于其他列存方案。

丰富的索引支持:支持全局多维索引、文件索引、Min/Max、倒排索引等多种索引技术,从表级,文件级,列级等多个层级逐级快速定位数据,避免SQL-on-Hadoop引擎常见的“暴力扫描“,从而大幅提升性能,实现十年数据秒级响应, 三百维字段任意组合查询。

全局字典编码:除了常见的Delta、RLE、BitPacking等编码外,CarbonData应用了全局字典编码来实现免解码的计算,计算框架可以直接使用经过编码的数据来做聚合,排序等计算,这对需要做跨节点数据交换的业务来说性能提升非常明显(3倍以上)。

自适应类型转换:CarbonData针对分析型应用中大量使用的数值类型(Double/Decimal/Numeric/BigInt)实现存储内数据类型转换,配合列式数据压缩,使得压缩非常高效,数据压缩率基于应用场景不同一般在2到8之间。

标准SQL兼容:在SparkSQL基础上,支持标准SQL99/2003/存储过程语法,TPC-DS标准测试用例全部无修改运行通过;支持数据批量更新、删除,适用于OLAP场景下数据的周期性刷新,例如拉链表更新、维表数据同步。

数据生态集成:支持与Hadoop、Spark等大数据生态系统集成,支持和商业BI工具无缝对接。既满足传统数仓、数据集市、BI应用要求,也提供大数据生态丰富多样的API支持,覆盖从GB级到EB级应用。

CarbonData:大数据融合数仓新一代引擎

开源开放: CarbonData于2016年6月3日全票通过进入大数据领域全球最大的开源社区Apache,目前特性贡献来自于华为、Intel、Talend、Ebay、Inmobi、阿里、美团、乐视、滴滴等公司资深架构师和开发人员。

以CarbonData为融合数仓的大数据方案为金融转型打造新一代数仓引擎

1)XX银行针对交易流水记录做审计业务,针对140亿的大数据量,老的方案经过多次优化查询仍需700多秒且系统不稳定,采用了CarbonData方案后平均性能提升10+倍,分行的明细查询平均在10秒内。

2)XX银行的行长手机项目(亿级数据),行长可通过手机终端随时查询各分行利润、营收报表等,客户原有系统查询需要等待10秒以上,采用了CarbonData方案后,平均性能提升了4-10倍,且支持数据线性增加,查询性能保持在小于3秒。

华为将依托社区开发模式,通过开放、共赢的方式,推动大数据技术生态持续发展,为金融业务转型,打造高性能多业务融合部署的新一代数仓引擎,为客户快速创造价值。

大数据

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:4G&5G;学习过程中整理的专业名词的符号简称
下一篇:ViaIVS基础网络平台
相关文章