常用数据分析工具汇总(常用数据分析工具汇总方法)

dylinchen 674 2022-12-18

本文目录一览:

数据分析工具常见的有哪些?

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

在Excel,需要重点了解数据处理的重要技巧及函数的应用,特别是数据清理技术的应用。这项运用能对数据去伪存真,掌握数据主动权,全面掌控数据;Excel数据透视表的应用重在挖掘隐藏的数据价值,轻松整合海量数据:各种图表类型的制作技巧及Power Query、Power Pivot的应用可展现数据可视化效果,让数据说话。因此想从事数据分析岗位的,需要快速掌握快各种Excel数据处理与分析技巧。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观

如何理解数据可视化?像我们以前上学的时候学过的柱状图,饼状图,也是数据可视化的一种。只是在现在,简单的柱状图已经不能满足工作所需。目前比较流行的商业数据可视化工具是Tableau Echarts。

Echarts是开源的,代码可以自己改,种类也非常丰富,这里不多做介绍,可以去创建一个工作区了解下。

4、大数据分析:SPSS Python HiveSQL 等

如果说Excel是“轻数据处理工具”,Mysql是“中型数据处理工具”那么,大数据分析,涉及的面就非常广泛,技术点涉及的也比较多。这也就是为什么目前互联网公司年薪百万重金难求大数据分析师的原因

大数据分析需要处理海量的数据,这对于数据分析师的工作能力要求就比较高,一般来说,大数据分析师需要会

(1)会使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。知道Hive如何在Hadoop生态系统进行数据分析工作。

(2)会一些SPSS modeler基础应用,这部分技能对应数据建模分析师

(3)何使用R语言进行数据集的创建和数据的管理等工作;会使用R语言数据可视化操作,让学员学会如何用R语言作图,如条形图、折线图和组合图等等;是R语言数据挖掘,本部分数据挖掘工程师

(4)用Python来编写网络爬虫程序,从页面中抓取数据的多种方法,提取缓存中的数据,使用多个线程和进程来进行并发抓取等

总结一下


数据分析常用哪些工具?

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

数据分析最常用的工具有哪些?

1、Excel

Excel作为最基础也数据分析工具,同时也是最主要的数据分析工具。Excel有多种强大功能,比如创建表单,数据透视表,VBA等等,Excel的系统十分强大,以至于没有任何一个分析工具是可以超越它的,可以根据自己的需求分析数据。

Excel可以满足绝大部分数据分析工作的需求,同时也提供友好的操作界面,对于具备基本统计学理论的用户来说Excel是比较容易上手的,就是它的处理的数据量较小。

2、SAS

SAS功能强大并且可以编程,很受高级用户的欢迎,也正因为此,它是比较难掌握的软件之一,在企业工作中用的比较多,需要编写SAS程序去处理数据。

3、SPSS

SPSS是世界上最早采用图形菜单的驱动界面统计软件,其最大的特点就是操作界面极为友好,输出的结果美观漂亮。用户只需掌握一定的Windows操作技能,精通统计的分析原理,就能够使用该软件为特定的科研工作而服务。SPSS采用了Excel表格的方式输入与管理数据,数据的接口较为通用,可以方便地从其他数据库当中读入数据。其统计的过程包括常用的、较为成熟的统计过程,可以完全满足非统计专业人士的工作需要。

4、SQL

SQL可以说是数据方向所有岗位都要掌握的工具,入门相对比较简单,概括起来就是增删改查,SQL需要掌握的知识主要包括数据的定义语言以及数据的控制语言和操控语言。在数据操控的过程中要能够理解SQL的语法顺序和执行顺序,理解SQL与各种join的 不同,熟练的掌握SQL的重要函数,想要入行数据分析,SQL是必要技能。

5、Python

Python是一种面向对象、解释型计算机程序设计的语言。它的语法简洁清晰,Python在数据分析和数据可视化等方面都显得比较活跃。

同时Python具有强大的编程能力,但是这种编程语言不同于R或者matlab,python有非常强大的数据分析能力,还可以利用Python进行爬虫,写游戏,和自动化运维,在这些领域当中有应用很广泛,这些优点就使得一种技术去解决所有的业务服务问题,体现了Python有利于各个业务之间的融合,使用Python,能够大大地提高数据分析的效率。

6、BI工具

BI工具是按照数据分析的流程进行设计的,商业智能的BI是为数据分析而生的,诞生起点很高,目的是为了缩短商业数据到商业决策的时间,并用数据去影响决策。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:企业数据分析平台(企业数据网站)
下一篇:定期库存系统(定期库存控制系统)
相关文章