excle数据分析0基础(Excel数据分析基础)

知梧 491 2022-11-25

本篇文章给大家谈谈excle数据分析0基础,以及Excel数据分析基础对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享excle数据分析0基础的知识,其中也会对Excel数据分析基础进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

请问excel表格怎么做数据分析?

1、新建并打开excel表格excle数据分析0基础,

2、首先添加数据分析插件excle数据分析0基础,点击左上角按钮,出现菜单页面,选中右下角“EXCEL选项”按钮,点击,

3、然后点击“加载项”选项,选中“分析工具库”,点击下方"转到"按钮,

4、然后出现excel加载宏界面,在”分析工具库“前方框内打勾,点击确定。

5、经过上一步已经成功添加”数据分析插件“,在”数据“-”数据分析“下可以找到,

6、然后点击”数据分析“,可以找到相关excle数据分析0基础的分析方法,如 回归分析,方差分析,相关分析等。

学数据分析需要具备什么基础,零基础好学吗

Excel、SQL、Python是数据分析师必知必会的3个基本工具,下面一个个来看:

对于Excel的学习,如果意向的岗位不是那种纯excel的数据分析师岗位的话,建议不需要花费太多时间在excel上,主要要掌握vlookup、透视表和一些常用图表,不会的函数就直接百度。

SQL核心!sql一定要熟,完全没有基础的同学可以先看《sql必知必会》,了解sql的一些基本知识,增改删查,主要看查询的部分。看完这本书后你对sql的语法应该有了一些基本的了解,学会之后,还需要多加练习,推荐一个练习的网站,牛客网编程,强力推荐,可以自动批改sql正误,纯中文,还有题目讲解。

相对上面两个工具,python的学习难度会稍微大一些。python能干很多事,对于数据分析师来说,主要应掌握基础语法和数据科学的模块,主要包括pandas numpy 和机器学习库sklearn等,

想要了解更多关于数据分析的问题可以到CDA认证中心咨询一下,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。

零基础学习数据分析要做哪些准备?

1.统计学相关知识

统计学是数据分析的基础,因为数据分析需要对大量数据进行统计分析,大家可以通过对统计学的学习,培养数据分析最基本的一些逻辑思维。


2. EXCEL


不要小看EXCEL,它可是最初级的数据分析工具,在处理的数据量不是很大时,EXCEL完全可以胜任。而且大家都有一定基础,平时工作中也经常用,学习起来应该很容易,重点应该加强对于各类函数以及EXCEL数据可视化的学习。


3.代码语言的了解


数据分析需要使用的工具很多,例如python、SQL等,这些都需要强大的代码知识做支撑,所以有想学习数据分析的小伙伴可以在学习之前初步对代码有一个了解,这样不至于真正学习起来手足无措。

excle数据分析0基础(Excel数据分析基础)


关于零基础学习数据分析要做哪些准备,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

数据分析零基础学习吗?

零基础可以学习数据分析,进入数据分析行业的要求并不高,但是具备数据分析相关技能是必须的,数据分析是人人都可以学习,人人都可以进入的行业。

以下是数据分析师应该具备的相关技能,希望可以帮到你。

数学知识

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

分析工具

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

编程语言

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

业务理解

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

逻辑思维

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

协调沟通

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

关于excle数据分析0基础和Excel数据分析基础的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 excle数据分析0基础的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于Excel数据分析基础、excle数据分析0基础的信息别忘了在本站进行查找喔。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:excle数据分析工具(excel数据分析工具详解)
下一篇:excel做数据分析教程(如何用excel做数据分析)
相关文章