转载】如何降低Istio服务网格中Envoy的内存开销

网友投稿 634 2022-05-29

Envoy的内存占用

在Istio服务网格中,每个Envoy占用的内存也许并不算多,但所有sidecar增加的内存累积起来则是一个不小的数字。在进行商用部署时,我们需要考虑如何优化并减少服务网格带来的额外内存消耗。

【转载】如何降低Istio服务网格中Envoy的内存开销

下面是在我环境中的一个实测数据:

Envoy配置中的Listener和Cluster数量

Listener数量 175

Cluster数量 325

endpoint数量 466

内存占用情况

$ sudo docker stats 2e8fb CONTAINER           CPU %               MEM USAGE / LIMIT     MEM %               NET I/O             BLOCK I/O           PIDS 2e8fb               0.75%               105.9 MiB / 256 MiB   41.39%              0 B / 0 B           0 B / 0 B           165

从上面的数据可以看到,在一个有325个cluster和175个Listener的服务网格中,一个Envoy的实际内存占用量达到了100M左右;网格中一共有466个实例,则所有Envoy占用的内存达到了466*100M=46.6G,这些增加的内存消耗是一个不容小视的数据。

减少TCMalloc预留系统内存

根据Istio官方文档,Envoy占用的内存大小和其配置相关,和请求处理速率无关。在一个较大的namespace中,Envoy大约占用50M内存。然而对于多大为“较大”,Istio官方文档并未给出一个明确的数据。

通过Envoy的管理端口查看上面环境中一个Envoy内存分配的详细情况:

$ sudo docker exec 2e8fb curl http://127.0.0.1:15000/memory {  "allocated": "50315720",                //Envoy实际占用内存  "heap_size": "102637568",               //TCMalloc预留的系统内存  "pageheap_unmapped": "4603904",  "pageheap_free": "9183232",  "total_thread_cache": "27784296" }

各个指标的详细说明参见Envoy文档。从上面的数据可以看到Envoy真正使用的内存为50M左右,和官方文档一致。但由于Envoy采用了TCMalloc作为内存管理器,导致其占用内存大于Envoy实际使用内存。

TCMalloc的内存分配效率比glibc的malloc更高,但会预留系统内存,导致程序占用内存大于其实际所需内存。从前面的Envoy admin 接口的输出可以看到TCMalloc预留的内存为100M左右,远远大于了Envoy实际所需的内存数量。

根据Envoy的实际内存占用情况,将container的最大内存限制调整为60M后再运行,Envoy可以正常启动。再次用docker stat命令查看,其消耗的内存也在60M以内。

通过优化配置降低Envoy内存占用

即使将内存降低到50M,在一些对资源要求比较严格的环境,例如边缘计算的场景中,网格中这些Envoy内存累加在一起也是不能接受的,因此需要想办法进一步降低Envoy的资源使用。

根据Envoy的这个github issue(Per listener and per cluster memory overhead is too high #4196)和Istio文档可以得知,Envoy占用的内存和其配置的Listener和Cluster个数是成线性关系的,Listener和Cluster越多,Envoy占用的内存越大,因此一个自然的想法就是通过减少Pilot为Envoy创建的Listener和Cluster数量来降低Envoy的内存开销。

按nampese对配置进行隔离

在Istio 1.3中,Pilot在创建Lister和Cluster时已经按照namespace对Service进行了隔离,Pilot缺省只会为Envoy创建和其代理服务在同一个namespace中的Service相关的Listener和Cluster。按照namespace进行隔离在一定程度上减少了Envoy中的Listener和Cluster数量,但还是太过于粗犷,对内存的优化效果有限。

在实际的产品部署中,一个namespace中往往会部署大量相关的微服务,这些微服务在逻辑上属于同一个业务系统,但并不是namespace中的任意两个微服务之间都存在访问关系,因此按照namespace进行隔离还是会导致Envoy中存在大量该sidecar不需要的Listener和Cluster配置。

按服务访问关系进行细粒度隔离

在一个微服务运用中,一个服务访问的其他服务一般不会超过10个,而一个namespace中可能部署多达上百个微服务,导致Envoy中存在大量冗余配置,导致不必要的内存消耗。最合理的做法是只为一个sidecar配置该sidecar所代理服务需要访问的外部服务相关的配置。

Istio提供了Siedecar CRD,用于对Pilot向sidecar下发的缺省配置进行更细粒度的调整。下面以Bookinfo示例程序说明如何调整一个sidecar的配置。

在Bookinfo示例程序中,几个微服务之间的调用关系如下:

从图中可以看到,reviews服务只需要访问ratings服务,因此在reviews的sidecar中只需要ratings服务相关的outbound配置。

但是通过查询reviews pod中proxy的配置,可以看到Pilot下发的缺省配置信息中包含了reviews, productpage,details这些它并不需要的outbound cluster信息,这些outbound cluster会导致额外的内存消耗。

master $ kubectl exec reviews-v3-54c6c64795-2tzjc -c istio-proxy curl 127.0.0.1:15000/clusters|grep 9080|grep added_via_api::true|grep outbound outbound|9080||reviews.default.svc.cluster.local::added_via_api::true outbound|9080||details.default.svc.cluster.local::added_via_api::true outbound|9080||ratings.default.svc.cluster.local::added_via_api::true outbound|9080||productpage.default.svc.cluster.local::added_via_api::true

下面通过sidecar来对reviews服务的sidecar进行配置,只为ratings服务创建相关的outbound cluster。

创建一个sidecar.yaml文件,对reviews服务进行配置。

apiVersion: networking.istio.io/v1alpha3 kind: Sidecar metadata:   name: reviews   namespace: default spec:   workloadSelector:     labels:       app: reviews   egress:   - hosts:     - "./ratings.default.svc.cluster.local"

在Istio中运用该sidecar配置。

master $ kubectl apply -f sidecar.yaml sidecar.networking.istio.io/reviews created

再查看Reviews Pod中的Envoy配置,配置中的outbound cluster只包含ratings服务,去掉了其他无关的服务相关的配置。

master $ kubectl exec reviews-v1-75b979578c-x7g46 -c istio-proxy curl 127.0.0.1:15000/clusters|grep 9080|grep added_via_api::true|grep outbound outbound|9080||ratings.default.svc.cluster.local::added_via_api::true

在本文开始的环境中再进行测试,通过该方法去掉无关配置,只保留5个左右相关的outbound service,可以把Envoy的内存控制在15M以内。

总结

在Istio服务网格中,伴随应用部署的Envoy sidecar导致了较大的内存占用。通过对sidecar镜像的内存进行限制,并通过Pilot对sidecar的缺省配置按照服务的实际关联关系进行细化调整,可以对Envoy的内存占用进行优化,减少Istio服务网格部署对内存的额外消耗。

参考文档

Envoy Admin: Memory

TCMalloc : Thread-Caching Malloc

Istio Performance and Scalability

Per listener and per cluster memory overhead is too high #4196

Istio Traffic Management: Sidecar

Istio Kubernetes

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:技术分享 | 常用测试策略与测试手段
下一篇:《百问机器学习》第四问:有哪些文本表示模型?各有什么优缺点?
相关文章