供应链系统搭建的关键步骤与挑战,如何实现高效运作?
551
2022-10-22
甘特图鱼骨图
本文目录一览:
护理质量管理工具有甘特图、直方图、雷达图、查检表、柏拉图、鱼骨图等。
常见的护理管理工具有:甘特图、直方图、雷达图、查检表、柏拉图、鱼骨图等,而作用于整个环节的中间链即为PDCA——制定计划到数据分析的过程。管理把控整个项目的走向,就需要精通各管理工具实际的作用。
一、QC七大手法分为: 1、简易七大手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图 2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图 3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法 计数值:以合格数、缺点数等使用点数计算而得的数据一般通称为计数数据。(数一数) 计量值:以重要、时间、含量、长度等可以测量而得来的数据,一般为计量值,如长度、重要、浓度,有小数点的凡四舍五入都称之。(量一量) 4、QC七大手法由五图,一表一法组成: 五图:柏拉图、散布图、直方图、管制图、特性要因分析图(鱼骨图) 一表:查检表(甘特图) 一法:层别法 二、介绍简易七大手法: 1、甘特图: 用途 1、工作进度安排 2、查核工作进度 3、掌握现况 4、日常计划管理用
是一种最容易、最有效的一种进度自我管理。 2、统计图(条形图): 用途 1、异常数据一目了然。 2、容易对照比较。 3、易看出结论。
应用最普通报章、杂志均可看到的图表。 应用到层别法。 3、推移图(趋势图): 用途 1、数据对时间变化管理使用。 2、可以把握现状、掌握问题点。 3、效果、差异比较。
了解数据差异最简单的方法,应用很广。 次品率、推移图。 4、流程图: 用途 1、工作内容之表示。 2、容易掌握工作站。 3、教育、说明用。
工作说明、内容之简易表示方法。 5、圆图: 用途 1、用以比较各部分构成比例。 2、以时钟旋转方向由大到小排列,将圆分成若干个扇形。 3、直截了当的描绘各项所占比例。
用到层别法。 三、介绍旧七大手法: 1、查检表(CHECK LIST) 用途 1、日常管理用 2、收集数据用 3、改善管理用
帮助每个人在最短时间内完成必要之数据收集 2、层别法: 用途 1、应用层别法、找出数据差异因素而对症下药。 2、以4M,每1M层别之。
1、 借用其他图形,本身无图形。 2、 由大到小排列。 3、柏拉图(计数值统计): 借用层别图。 由生产现场所收集到后数据,必须有效的加以分析、运用,才能成为人价值的数据。而将此数据加以分类、整理,并作成图表,充分的掌握问题点及重要原因,是时下不可缺的管理工具。而最为现场人员所使用于数据管理的图为柏拉图。 定义:1)根据所收集的数据,按不良原因、不良状况、不良项目、不良发生后位置等不同区分标准而加以整理、分类,借以寻求占最大比率的原因状况或位置,按其大小顺序后排列,再加上累积值的图形。 2)从柏拉图可看出哪一项目有问题,其影响度如何,以判断问题之所在,并针对问题点采取改善措施,故又称ABC图,(分析前面2-3项重要项目之控制。) 3)又因图后排列是依大小顺序,故又可称为排列图。 4)柏拉图制作说明: A 决定数据的分类项目 分类的方式有: a 结果的分类包括不良项目别、场所别、时间别、工程别。 b原因的分类包括材料别(厂商、成份等)。方式别(作业条件、程序、方法、环境等)、人(年龄、熟练度、经验等)、设备别(机械、工具等)。 分类的项目必须合乎问题的症结,一般的分类先从结果分类上着手,以便洞悉问题之所在,然后再进行原因分析,分析出问题产生之原因,以便采取有效的对策。将此分析的结果,依其结果与原因分别绘制柏拉图。 B 决定收集数据的期间,并按分类项目,在期间内收集数据。 考虑发生问题的状况,从中选择恰当的期限(如一天、一周、一月、一季或一年为期间)来收集数据。 C 依分类项目别,做数据整理,并作成统计表。 a 各项目按出现数据大小顺序排列,其他项排在最后一项,并求其累积数。(其他项不可大于前三项,若大于时应再细分)。 b求各项目数据所占比率累计数之影响度。 c其他项排在最后,若太大时,须检讨是否其他重要要因需提出。 不良率(%)=各项不良数÷总检查数*100 影响度(%)=各项不良数÷总不良数×100 D 记入图表纸并依数据大小排列画出柱状图。 a 于图表用纸记入纵轴及横轴。纵轴左侧填不良数、不良率,或损失金额,纵轴右侧刻度表示累计影响度(比率);在最上方刻100%,左方则依收集数据大小做适当刻度。横轴填分类项目名称,由左至右按照所占比率大小记入,其他项则记在最右边。 b 横轴与纵轴应做适度比例,横轴不宜长于纵轴。 E 绘累计曲线: a点上累计不良数(或累计不良率)。 b 用折线连结。 F 绘累计比率: a 纵轴右边绘折线终点为100%。 b 将0~100%间分成10等分,把%的分度记上(即累计影响度)。 c 标出前三项(或四项)之累计影响度是否80%或接近80%。 J 记入必要的事项: a 标题(目的)。 b 数据收集期间。 c 数据合计(总检查、不良数、不良率…等)。 d 工程别。 e 作成者(包括记录者,绘图者…)。 绘图注意事项:1)柏拉图之横轴是按项目别,依大小顺序由高而低排列,[其他]项排在最后一位。 2)柏拉图之柱形图宽度要一致,纵轴与横轴比例为3:2。 3)纵轴最高点为总不良数,且所表示之间距离一致。 4)次数少的项目太多时,可考虑将后几项归纳成[其他]项;其他项不应大于前几项,若大于时应再分析。有时,改变层别或分类的方法,亦可使分类的项目减少。通常,项目别包括其他项在内,以不要超过4~6项为原则。 5)改善前后之比较时: a 改善后,横轴项目别依照出现大小顺序由高而低排列。 b 前后比较基准须一致,且刻度应相同,则更易于比较。 4、管制图: (1) 何为管制图: 为使现场之品质状况达成吾人所谓之“管理”作业,一般均以侦测产品之 品质特性来替代“管理”作业是否正常,而品质特性是随着时间、各种状况有着高低的变化; 那么到底高到何种程度或低至何种状况才算吾人所谓异常?故设定一合理之高低界限,作为吾人探测现场制程状况是否在“管理”状态,即为管制图之基本根源。 管制图是于1924年由美国品管大师修哈特博士所发明。而主要主义即是【一种以实际产品品质特性与依过去经验所研判之制程之能力的管制界 限比较,而以时间顺序用图形表示者】。 (2) 基本特性: 一般管制图纵轴均设定为产品的品质特性,而以制程变化的数据为分度;横轴则为检测制品之群体代码或编号或年月日等,以时间别或制造先后别,依顺序将点绘于图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Center Line,CL),一般以蓝色之实线绘制。左上方的一条称为管制上限(Upper Control Limit,UCL),在下方的称为管制下限(Lower Control Limit,LCL),对上、下管制界限之绘制,则一般均用红色之虚线表现之,以表示可接受之变异范围;至于实际产品品质特性之点连线条则大都以黑色实线表现绘制之。 (3) 管制图原理: 1)品质变异之形成原因 一般在制造的过程中,无论是多么精密的设备,环境,其品质特性一定都会有变动,绝无法做完全一样的制品;而引起变动的原因可分为两种,一种为偶然(机遇)原因,一种为异常(非机遇)原因。 2)管制图界限之构成: 管制图是以常分配中之三个标准差为理论依据,中心线为平均值,上、下管制界限以平均数加减三个标准差(±3σ)之值,以判断制程中是否有问题发生,此即修哈特博士所创之法。 (4) 管制图种类: 1)依数据性质分类: A 计量值管制图:所谓计量值系指管制图之数据均属于由量具实际量测而得;如长度、重量、浓度等特性均为连续性者。常用的有: a 平均数与全距管制图(X(—)-R Chart) b 平均数与标准差管制图(X(—)-σChart) c 中位数与全距管制图(X(~)-R Chart) d 个别值与移动全距管制图(X-Rm Chart) e 最大值与最小值管制图(L-S Chart) B 计数值管制图:所谓计数值是指管制图之数据均属于单位计算数者而得;如不良数、缺点数等间断性数据均属之。常用的有: a 不良率管制图(P Chart) b 不良数管制图(Pn chart ,又称np chart或d chart) c 缺点数管制图(C chart) d 单位缺点数管制图(U chart) 2)计数值与计量值管制图之应用比较 计量值
计数值 优点
1、甚灵敏,容易调查真因。 2、可及时反应不良,使品质稳定。
1、所须数据可用简单方法获得。 2、对整体品质状况之了解较方便。 缺点
1、抽样频度较高、费时麻烦。 2、数据须测定,且再计算,须有训练之人方可胜任。
1、无法寻得不良之真因。 2、及时性不足,易延误时机。 (5) 管制图之绘制: 介绍:计量值管制图(X-R)常用 1)先行收集100个以上数据,依测定之先后顺序排列之。 2)以2~5个数据为一组(一般采4~5个),分成约20-25组。 3)将各组数据记入数据表栏位内。 4)计算各组之平均值X。(取至测定值最小单位下一位数) 5)计算各组之全距R。(最大值-最小值=R) 6)计算总平均X。 X=(X1 X2 X3 … Xk)/k=ξXi/k(k为组数) 7)计算全距之平均R: R=(R1 R2 R3 … Rk)/k=ξRi/k 8)计算管制界限 X管制图:中心线(CL)=X 管制上限(UCL)=X A2R 管制下限(LCL)=X-A2R R管制图:中心线(CL)=R 管制上限(UCL)=D4R 管制下限(LCL)=D3R A2,D3,D4之值,随每组之样本数不同而有差异,但仍遵循三个标准差之原理,计算而得,今已被整理成常用系数表。 9)绘制中心线及管制界限,并将各点点入图中。 10)将各数据履历及特殊原因记入,以备查考、分析、判断。 (6) 管制点之点绘制要领: 1)各项工程名称、管制特性、测定单位、设备别、操作(测定)者、样本大小、材料别、环境变化…等任何变更资料应清楚填入,以便资料之分析整理。 2)计量值变更管制图(X-R,X-R…等)其X管制图与R管制图的管制界限席宽度取法,一般原则以组之样本数(n)为参考,X管制图之单位分度约为R管制图之1/n倍。 (纵轴管制界限宽度约20-30m/m;横轴各组间隔约2-5mm) 3)中心线(CL)以实线记入,管制界限则记入虚线;各线上须依线别分别记入CL、UCL、LCL、等符号。 4)CL、UCL、LCL之数值位数计算比测定值多两位数即可。 (各组数据之平均计算数则取比测定值多一位数) 5)点之绘制有[·]、[○]、[△]、[×]…等,最好由厂内统一规定。 6)变管制图,二个管制图之绘制间隔最少距20mm以上,可行的话最好距30mm左右。 (7) 管制图之判读: 1)管制状态之判断(制程于稳定状态) A 多数点子集中在中心线附近。 B 少数点子落在管制界限附近。 C 点子之分布与跳动呈随机状态,无规则可循。 D 无点子超出管制界限以外。 2)可否延长管制限界限做为后续制程管制用之研判基准: A 连续25点以上出现在管制界限线内时(机率为93.46%)。 B 连续35点中,出现在管制界限外点子不超出1点时。 C 连续100点中,出现在管制界限外点子不超出2点时。 制程在满足上述条件时,虽可认为制程在管制状态而不予变动管制界限,但并非点子超出管制界限外亦可接受;这此超限之点子必有异常原因,故应追究调查原因并予以消除之。 3)检定判读原则: A 应视每一个点子为一个分配,非单纯之点。 B 点子之动向代表制程之变化;虽无异常之原因,各点子在界限内仍会有差异存在。 C 异常之一般检定原则:(8) 管制图使用之注意事项: 1)管制图使用前,现场作业应予标准化作业完成。 2)管制图使用前,应先决定管制项目,包括品质特性之选择与取样数量之决定。 3)管制界限千万不可用规格值代替。 4)管制图种类之遴选应配合管制项目之决定时搭配之。 5)抽样方法以能取得合理样组为原则。 6)点子超出界限或有不正常之状态,必须利用各种措施研究改善或配合统计方法,把异常原因找出,同时加以消除。 7)X-R管制图里组的大小(n),一般采n=4-5最适合。 8)R管制图没下限,系因R值是由同组数据之最大值减最小值而得,因之LCL取负值没有意义。 9)制程管制做得不好,管制图形同虚设,要使管制图发挥效用,应使产品制程能力中之Cp值(制程精密度)大于1以上。
品保七大手法分为旧七大手法和新七大手法:
旧七大手法
一,统计分析表
统计分析表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效。
二,数据分层法
数据分层法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多,如果不把这些因素区别开来,则难以得出变化的规律。数据分层可根据实际情况按多种方式进行。
三,排列图
排列图又称为柏拉图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。
四,因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
五,直方图
直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。
六,散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。
七,控制图
控制图又称为管制图。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。
新七大手法
一,树图
树图就是以“目的—方法”或“结果—原因”层层展开分析,以寻找最恰当的方法和最根本的原因,因其形状如大树分枝,因此取名树图,目前在企业界被广泛应用。
二,关连图
关连图就是把现象与问题有关系的各种因素串联起来的图形。通过连图可以找出与此问题有关系的一切要图,从而进一步抓住重点问题并寻求解决对策。
三,亲和图
亲和图也叫KJ法,是指把收集到大量的各种数据、资料,按照其之间的亲和性(相近性)归纳整理,使问题明朗化,从而有利于问题解决的一种方法。
四,矩阵图
矩阵图是指从问题事项中找出成对的因素群,分别排列成行和列,找出其间行与列的相关性或相关程度大小的一种方法。
五,矢线图
矢线图即网络分析技术,是以工序之间相互联系的网络图和较为简单的计算方法来反映整个工程或任务的全貌,指出对全局有影响的关键工序和关键路线,从而做出切合实际的统筹安排。
六,PDPC法
PDPC法是英文原名ProcessDecision Program Chart的缩写,中文称之为过程决策程序图法。所谓PDPC法是指为实现某一目的进行多方案设计,以应对实施过程中产生的各种变化的一种计划法。
七,矩阵数据分析
矩阵数据分析法是指通过运用主要成分分析等计算方法,准确地整理和分析在矩阵图上用数据定量化表示的各元素间关系的一种方法。是一种定量分析问题的方法。在品质管理新七大手法中,矩阵数据分析法是唯一一种利用数据分析问题的方法。
扩展资料
品保七大手法的起源
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获得成功之后,1979年又提出新七种工具。之所以称之为“七种工具”,是因为日本古代武士在出阵作战时,经常携带有七种武器,所谓七种工具就是沿用了七种武器。
有用的质量统计管理工具当然不止七种。除了新旧七种工具以外,常用的工具还有实验设计、分布图、推移图等。
其实,质量管理的方法可以分为两大类:一是建立在全面质量管理思想之上的组织性的质量管理;二是以数理统计方法为基础的质量控制。
品保七大手法的主要内容
组织性的质量管理方法是指从组织结构,业务流程和人员工作方式的角度进行质量管理的方法。它建立在全面质量管理的思想之上,主要内容有:制定质量方针、建立质量保证体系、开展QC小组活动、各部门质量责任的分担、进行质量诊断等。
参考资料来源:百度百科-品质管理七大手法
一、QC七大手法分为:1、简易七大手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图
2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图
3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法
计数值:以合格数、缺点数等使用点数计算而得的数据一般通称为计数数据。(数一数)
计量值:以重要、时间、含量、长度等可以测量而得来的数据,一般为计量值,如长度、重要、浓度,有小数点的凡四舍五入都称之。(量一量)
4、QC七大手法由五图,一表一法组成:五图:柏拉图、散布图、直方图、管制图、特性要因分析图(鱼骨图)一表:查检表(甘特图)一法:层别法二、介绍简易七大手法:
1、甘特图:用途1、工作进度安排2、查核工作进度3、掌握现况4、日常计划管理用是一种最容易、最有效的一种进度自我管理。2、统计图(条形图):用途
1、异常数据一目了然。2、容易对照比较。3、易看出结论。应用最普通报章、杂志均可看到的图表。应用到层别法。3、推移图(趋势图):用途1、数据对时间变化管理使用。
2、可以把握现状、掌握问题点。3、效果、差异比较。了解数据差异最简单的方法,应用很广。次品率、推移图。4、流程图:用途1、工作内容之表示。2、容易掌握工作站。
3、教育、说明用。工作说明、内容之简易表示方法。5、圆图:用途1、用以比较各部分构成比例。
1、QC简易七手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图
2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图
3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法
1.
查检表(Check
List)
以简单的数据或容易了解的方式,作成图形或表格,只要记上检查记号,并加以统计整理,作为进一步分析或核对检查用,其目的在於『现状调查』。
2.
柏拉图(Pareto
Diagram)
根据所搜集之数据,以不良原因、不良状况、不良发生或客户抱怨的种类、安全事故等,项目别加以分类,找出比率最大的项目或原因并按照大小顺序排列,再加上累积值的图形。用以判断问题症结之所。
3.
特性要因图(Characteristic
Diagram)
一个问题的特性(结果)受一些要因(原因)的影响时,将这些要因加以整理,而成为有相互关系而且有条且有系统的图形。其主要目的在阐明因果关系,亦称『因果图』,因其形状与鱼骨图相似故又常被称作『鱼骨图』。
4.散布图(Scatter
Diagram)
把互相有关连的对应数据,在方格上以纵轴表示结果,以横轴表示原因,然后用点表示分布形态,根据分析的形态未研判对应数据之间的相互关系。
5.
管制图(Control
Chart)
一种用於调查制造程序是否在稳定状态下,或者维持制造程序在稳定状态下所用的图。管制纵轴表产品品质特性,以制程变化数据为分度;横轴代表产品的群体号码、制造曰期,依照时间顺序将点画在图上,再与管制界限比较,以判别产品品质是否安定的一种图形。
6.
直方图(Histogram)
将搜集的数据特性值或结果值,在一定的范围横轴上加以区分成几个相等区间,将各区间内的测定值所出现的次数累积起来的面积用柱形画出的图形。因此也叫柱形图。
7.
层别法(Stractification)
针对部门别、人别、工作方法别、设备、地点等所搜集的数据,按照它们共同特徵加以分类、统计的一种分析方法/CA
牛和马的区别。。。
例:生产线上有很多类型的不良;
用途不一样: 柏拉图:那类不良占多数,可以用柏拉图将它们排列出来;
(用于找出重点因素)
因果图:对 为什么这个类型的不良,会发生这么多 进行分析;
(用于对重点因素的分析)
图像不一样:柏拉图:柱状图
因果图:鱼骨图
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。