python多线程详解

网友投稿 703 2022-05-29

一、多线程介绍

1、什么是线程?

线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位。

线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源。

一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行。

2、为什么要使用多线程?

线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄和其他进程应有的状态。

因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程之中拥有独立的内存单元,而多个线程共享内存,从而极大的提升了程序的运行效率。

线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性,多个线程共享一个进程的虚拟空间。线程的共享环境 包括进程代码段、进程的共有数据等,利用这些共享的数据,线程之间很容易实现通信。

操作系统在创建进程时,必须为改进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程来实现并发比使用多进程的性能高得要多。

3、总结起来,使用多线程编程具有如下几个优点:

进程之间不能共享内存,但线程之间共享内存非常容易。

操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此使用多线程来实现多任务并发执行比使用多进程的效率高。

Python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了python的多线程编程。

二、代码举例

import threading

import time,os

'''

1、普通创建方式

'''

# def run(n):

#     print('task',n)

#     time.sleep(1)

#     print('2s')

#     time.sleep(1)

#     print('1s')

#     time.sleep(1)

#     print('0s')

#     time.sleep(1)

#

# if __name__ == '__main__':

# target是要执行的函数名(不是函数),args是函数对应的参数,以元组的形式存在

#     t1 = threading.Thread(target=run,args=('t1',))

#     t2 = threading.Thread(target=run,args=('t2',))

#     t1.start()

#     t2.start()

'''

2、自定义线程:继承threading.Thread来定义线程类,

其本质是重构Thread类中的run方法

'''

# class MyThread(threading.Thread):

#     def __init__(self,n):

#         super(MyThread,self).__init__()   #重构run函数必须写

#         self.n = n

#

#     def run(self):

#         print('task',self.n)

#         time.sleep(1)

#         print('2s')

#         time.sleep(1)

#         print('1s')

#         time.sleep(1)

#         print('0s')

#         time.sleep(1)

#

# if __name__ == '__main__':

#     t1 = MyThread('t1')

#     t2 = MyThread('t2')

#     t1.start()

#     t2.start()

'''

3、守护线程

下面这个例子,这里使用setDaemon(True)把所有的子线程都变成了主线程的守护线程,

因此当主线程结束后,子线程也会随之结束,所以当主线程结束后,整个程序就退出了。

所谓’线程守护’,就是主线程不管守护线程的执行情况,只要是其他非守护子线程结束且主线程执行完毕,

主线程都会关闭。也就是说:主线程不等待守护线程的执行完再去关闭。

主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。

因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,

而进程必须保证非守护线程都运行完毕后才能结束。

'''

# def run(n):

#     print('task',n)

#     time.sleep(1)

#     print('3s')

#     time.sleep(1)

#     print('2s')

#     time.sleep(1)

#     print('1s')

#

# if __name__ == '__main__':

#     t=threading.Thread(target=run,args=('t1',))

#     t.setDaemon(True)

#     t.start()

#     print('end')

'''

通过执行结果可以看出,设置守护线程之后,当主线程结束时,子线程也将立即结束,不再执行

'''

'''

4、主线程等待子线程结束

为了让守护线程执行结束之后,主线程再结束,我们可以使用join方法,让主线程等待守护线程执行完毕再结束。

'''

# def run(n):

#     print('task',n)

#     time.sleep(2)

#     print('5s')

#     time.sleep(2)

#     print('3s')

#     time.sleep(2)

#     print('1s')

# if __name__ == '__main__':

#     t=threading.Thread(target=run,args=('t1',))

#     t.setDaemon(True)    #把子线程设置为守护线程,必须在start()之前设置

#     t.start()

#     t.join()     #设置主线程等待子线程结束

#     print('end')

'''

5、多线程共享全局变量

线程是进程的执行单元,进程是系统分配资源的最小执行单位,所以在同一个进程中的多线程是共享资源的。

'''

# g_num = 100

# def work1():

#     global  g_num

#     for i in range(3):

#         g_num+=1

#     print('in work1 g_num is : %d' % g_num)

#

# def work2():

#     global g_num

#     print('in work2 g_num is : %d' % g_num)

#

# if __name__ == '__main__':

#     t1 = threading.Thread(target=work1)

#     t1.start()

#     time.sleep(1)

#     t2=threading.Thread(target=work2)

#     t2.start()

'''

6、互斥锁(Lock)

由于线程之间是进行随机调度,当多个线程同时修改同一条数据时可能会出现脏数据,

所以出现了线程锁,即同一时刻只允许一个线程执行某些操作。

线程锁用于锁定资源,可以定义多个锁,像下面的代码,当需要独占某一个资源时,

任何一个锁都可以锁定这个资源,就好比你用不同的锁都可以把这个相同的门锁住一样。

由于线程之间是进行随机调度的,如果有多个线程同时操作一个对象,

如果没有很好地保护该对象,会造成程序结果的不可预期,也称为“线程不安全”。

为了防止上面情况的发生,就出现了互斥锁(Lock)

'''

# def work():

#     global n

#     lock.acquire()

#     temp = n

#     time.sleep(0.1)

#     n = temp-1

#     lock.release()

#

#

# if __name__ == '__main__':

#     lock = threading.Lock()

#     n = 100

#     l = []

#     for i in range(100):

#         p = Thread(target=work)

#         l.append(p)

#         p.start()

#     for p in l:

#         p.join()

'''

7、递归锁:RLcok类的用法和Lock类一模一样,但它支持嵌套。

RLock类代表可重入锁(Reentrant Lock)。

对于可重入锁,在同一个线程中可以对它进行多次锁定,

也可以多次释放。如果使用 RLock,那么 acquire() 和 release() 方法必须成对出现。

如果调用了 n 次 acquire() 加锁,则必须调用 n 次 release() 才能释放锁。

由此可见,RLock 锁具有可重入性。也就是说,同一个线程可以对已被加锁的 RLock 锁再次加锁,

RLock 对象会维持一个计数器来追踪 acquire() 方法的嵌套调用,

线程在每次调用 acquire() 加锁后,都必须显式调用 release() 方法来释放锁。

所以,一段被锁保护的方法可以调用另一个被相同锁保护的方法。

'''

# def func(lock):

#     global gl_num

#     lock.acquire()

#     gl_num += 1

#     time.sleep(1)

#     print(gl_num)

#     lock.release()

#

#

# if __name__ == '__main__':

#     gl_num = 0

#     lock = threading.RLock()

#     for i in range(10):

#         t = threading.Thread(target=func,args=(lock,))

#         t.start()

'''

8、信号量(BoundedSemaphore类)

互斥锁同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据,

比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去

'''

# def run(n,semaphore):

#     semaphore.acquire()   #加锁

#     time.sleep(3)

#     print('run the thread:%s\n' % n)

#     semaphore.release()    #释放

#

#

# if __name__== '__main__':

#     num=0

#     semaphore = threading.BoundedSemaphore(5)   #最多允许5个线程同时运行

#     for i in range(22):

#         t = threading.Thread(target=run,args=('t-%s' % i,semaphore))

#         t.start()

#     while threading.active_count() !=1:

#         pass

#     else:

#         print('----------all threads done-----------')

'''

9、python线程事件

用于主线程控制其他线程的执行,事件是一个简单的线程同步对象,其主要提供以下的几个方法:

clear将flag设置为 False

set将flag设置为 True

is_set判断是否设置了flag

wait会一直监听flag,如果没有检测到flag就一直处于阻塞状态

事件处理的机制:全局定义了一个Flag,

当Flag的值为False,那么event.wait()就会阻塞,

当flag值为True,那么event.wait()便不再阻塞

'''

event = threading.Event()

def lighter():

count = 0

event.set()         #初始者为绿灯

while True:

if 5 < count <=10:

event.clear()  #红灯,清除标志位

python多线程详解

print("[41;lmred light is on...3[0m]")

elif count > 10:

event.set()    #绿灯,设置标志位

count = 0

else:

print('\33[42;lmgreen light is on...\033[0m')

time.sleep(1)

count += 1

def car(name):

while True:

if event.is_set():     #判断是否设置了标志位

print('[%s] running.....'%name)

time.sleep(1)

else:

print('[%s] sees red light,waiting...'%name)

event.wait()

print('[%s] green light is on,start going...'%name)

# startTime = time.time()

light = threading.Thread(target=lighter,)

light.start()

car = threading.Thread(target=car,args=('MINT',))

car.start()

endTime = time.time()

# print('用时:',endTime-startTime)

'''

GIL  全局解释器

在非python环境中,单核情况下,同时只能有一个任务执行。

多核时可以支持多个线程同时执行。

但是在python中,无论有多少个核同时只能执行一个线程。

究其原因,这就是由于GIL的存在导致的。

GIL的全程是全局解释器,来源是python设计之初的考虑,为了数据安全所做的决定。

某个线程想要执行,必须先拿到GIL,我们可以

把GIL看做是“通行证”,并且在一个python进程之中,GIL只有一个。

拿不到线程的通行证,并且在一个python进程中,GIL只有一个,

拿不到通行证的线程,就不允许进入CPU执行。

GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,

所以他不能直接操作cpu,而只能利用GIL保证同一时间只能有一个线程拿到数据。

而在pypy和jpython中是没有GIL的python在使用多线程的时候,调用的是c语言的原生过程。

'''

'''

python针对不同类型的代码执行效率也是不同的

1、CPU密集型代码(各种循环处理、计算等),在这种情况下,由于计算工作多,

ticks技术很快就会达到阀值,然后出发GIL的释放与再竞争

(多个线程来回切换当然是需要消耗资源的),

所以python下的多线程对CPU密集型代码并不友好。

2、IO密集型代码(文件处理、网络爬虫等设计文件读写操作),

多线程能够有效提升效率(单线程下有IO操作会进行IO等待,

造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,

可以不浪费CPU的资源,从而能提升程序的执行效率)。

所以python的多线程对IO密集型代码比较友好。

'''

'''

主要要看任务的类型,我们把任务分为I/O密集型和计算密集型,

而多线程在切换中又分为I/O切换和时间切换。

如果任务属于是I/O密集型,

若不采用多线程,我们在进行I/O操作时,势必要等待前面一个I/O任务完成后面的I/O任务才能进行,

在这个等待的过程中,CPU处于等待状态,这时如果采用多线程的话,

刚好可以切换到进行另一个I/O任务。这样就刚好可以充分利用CPU避免CPU处于闲置状态,提高效率。

但是如果多线程任务都是计算型,CPU会一直在进行工作,

直到一定的时间后采取多线程时间切换的方式进行切换线程,此时CPU一直处于工作状态,

此种情况下并不能提高性能,相反在切换多线程任务时,可能还会造成时间和资源的浪费,

导致效能下降。这就是造成上面两种多线程结果不能的解释。

结论:I/O密集型任务,建议采取多线程,还可以采用多进程+协程的方式

(例如:爬虫多采用多线程处理爬取的数据);

对于计算密集型任务,python此时就不适用了。

'''

Python 任务调度 多线程

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:数据平台、大数据平台、数据中台……还分的清不?
下一篇:uniCloud基础入门(三)---云数据库基础
相关文章