供应链系统搭建的关键步骤与挑战,如何实现高效运作?
432
2022-10-17
数据分析
本文目录一览:
数据分析就是对数据进行分析。专业的说法,数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,以求最大化地开发数据的功能,发挥数据的作用。数据也称观测值,是通过实验、测量、观察、调查等方式获取的结果,常常以数量的形式展现出来。
数据分析要达到帮助管理者有效决策提供有价值信息,比如日常通报、专题分析等,这些就是数据分析具体工作的体现。而什么时候做通报工作,什么时候开展专题分析,这都需要我们根据实际情况做出选择的。
数据分析的六种基本分析方法有:
1、构成分析法;2、同类比较分析法;3、漏斗法;4、相关分析法;5、聚类分析法;6、分组分析法。
构成分析在统计分组的基础上计算结构指标,来反映被研究总体构成情况的方法。应用构成分析法,可从不同角度研究投资构成及其变动趋势,观察投资构成与产业结构、社会需要构成的适应关系,可以揭示事物由量变到质变的具体过程。
数据分析是对收集来的大量数据进行分析,提取有用信息,对数据加以详细研究和概括总结的过程。
1、数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥其数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析可帮助人们作出判断,以便采取适当行动。
2、数据分析有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。其过程概括起来包括明确分析目的与框架,数据收集,数据处理,数据分析,数据展现和撰写报告,也包括对比分析法,分组分析,交叉分析,平均分析法等。
3、数据分析能进行较高级的数据统计分析,录入数据库的设立,数据的校验,数据库的逻辑查错,对部分问卷的核对。而数据分析员是具有数理统计,经济学以及相关知识;能熟练使用EXCLE、SPSS、QUANVERT、SAS等统计软件。工作能力严谨的逻辑思维能力、学习能力、言语表达能力、管理能力,工作态度积极主动、工作认真、工作严谨。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
数据分析目的:
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。
这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。
进行数据分析步骤:
1、数据收集
当我们进行数据分析时,首先解决的问题就是数据源的问题。分为两大类。第一类:直接能够获取的数据,也就是内部数据。第二类:外部数据,经加工整理后获得数据。
2、数据清理
清洗数据的目的也就是从大量的、杂乱无章的数据中抽取以及推导出对解决问题有价值的、有意义的数据。清洗后保留下来的真正有价值、有条理的数据,为后面的数据分析减少分析障碍。
3、数据对比
对比也就是数据分析的切入口。因为如果没有参照物的话,数据也就没有一个定量的评估标准。通常情况下,我们会进行横向对比和纵向对比。横向对比,与行业平均数据,和竞争对手数据比较,纵向对比,是与自己家产品的历史数据比较,围绕着时间轴比较。
4、数据细分
数据对比出现了异常后,这时候就需要用到数据细分了,数据细分通常情况下先分纬度,再分粒度。纬度也就是时间或者是地域、来源、受访等。粒度也就是按照天、还是按照小时。而纬度结合粒度进行细分,可以将对比的差异值逐级锁定问题区域,就可以更为容易找出发生问题的原因了。
5、数据溯源
通过数据细分基本上我们就可以分析出大多数问题的原因,但也会遇到特殊的情况,因此这时候我们就需要进行进一步的分析,也就是通过数据溯源就能找出问题的原因。
依据锁定的这个纬度和粒度作为搜索条件,查询所涉及的原日志,源记录,然后基于此分析和反思用户的行为,往往会有不一样的发现。又或者结合用户使用场景去思考。
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
通过面向企业业务场景提供一站式大数据分析解决方案,能够为企业在增收益、降成本、提效率、控成本等四个角度带来价值贡献。
1、增收益
最直观的应用,即利用数据分析实现数字化精准营销。通过深度分析用户购买行为、消费习惯等,刻画用户画像,将数据分析结果转化为可操作执行的客户管理策略,以最佳的方式触及更多的客户,以实现销售收入的增长。
下图为推广收支测算分析,为广告投放提供决策依据。
下图为渠道销量分析,为渠道支持提供数据支撑。
2、降成本
例如通过数据分析实现对财务和人力的管理,从而控制各项成本、费用的支出,实现降低成本的作用。
下图为生产成本分析,了解成本构成情况。
下图为期间费用预实对比分析,把控费用情况。
3、提效率
每个企业都会出具相关报表,利用数据分析工具,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。
通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。
4、控风险
预算是否超支?债务是否逾期?是否缺货了、断货了?客户的回款率怎么样?设备的运行是否正常?哪种产品是否需要加速生产以实现产销平衡?...其实,几乎每个企业都会遇到各种各样的风险问题。通过数据分析,能够帮助企业进行实时监测,对偏离了预算的部分、对偏离了正常范围的数值能够进行主动预警,降低企业风险。
下图为税负率指标,当综合税负率过高,可以实现提示和预警。
下图为重要指标预警,重点监控项目的毛利率。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。